Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
18.0 Special Magic Squares, Lozenge Squares
Lozenge Squares are Magic Squares (odd order) with the even numbers in the corners, as illustrated below:
Lozenge Squares of a certain order, can be generated - relatively fast - with comparable routines as discussed in the corresponding sections.
18.2 Lozenge Squares (5 x 5)
Routine MgcSqr5b2 counted with a(13) = 13, 306416 (38302 unique) Lozenge Squares of order 5 within about half an hour.
Following sections will describe some interesting sub sets.
18.2.2 Pan Magic Squares, Don't Exist
The equations defining a Pan Magic Square of the fifth order as deducted in Section 3.1 proof that order 5 Pan Magic Lozenge Squares don't exist e.g.:
18.2.3 Associated Magic Squares
Associated Lozenge Squares of the fifth order can be generated with routine MgcSqr5c2, which produced 6912 Associated Lozenge Squares within 132 seconds.
18.2.4 Concentric Magic Squares
The 3 x 3 Center Square of a Concentric Lozenge Square of the fifth order contains only odd numbers, as illustrated below:
Possible Center Squares can be generated with routine Priem3a which generated 32 (4 unique) order 3 Magic Squares with odd numbers.
The table to the right side provides a breakdown of the number of Concentric Lozenge Squares for each of the Center Squares shown.
Diamond Inlay (General):
The table to the right side provides a breakdown of the number of Lozenge Squares for each of the Diamond Inlay shown.
Possible Square Inlays can be generated with routine Priem3b, which generated 72 (9 unique) order 3 Square Inlays with even corner numbers.
The table to the right side provides a breakdown of the number of Inlaid Lozenge Squares for each of the Square Inlays shown.
18.3.1 Concentric Magic Squares
The 5 x 5 Center Square of a Concentric Lozenge Square of the seventh order contains only 4 even corner numbers, as illustrated below:
Possible Center Squares (3 x 3) could be generated with routine Priem3a,
which generated 208 (26 unique) order 3 Magic Squares with odd numbers.
A set of unique squares is shown in Attachment 18.3.1.
Both values are only a fraction of the total possible number of order 7 Concentric Lozenge Squares.
18.3.2 Associated Magic Squares (Diamond Inlays)
Lozenge Squares of the seventh order, with Diamond Inlays of order 3 and 4, can be generated with routine MgcSqr7c, which counted 53980 of subject Lozenge Squares with a(28) = 1.
The order 3 Diamonds can be considered as a transformation of the Center Squares discussed in Section 18.3.1 above,
as shown in Attachment 18.3.2.
18.4.1 Concentric Magic Squares
The Concentric Center Squares of a Concentric Lozenge Square of the ninth order have following properties:
as illustrated in following example:
Concentric Lozenge Squares of order 9 can be constructed as follows:
Routine Priem3a generated 672 (84 unique) order 3 Center Squares with odd numbers (s1 = 123).
Both values are only a fraction of the total possible number of order 9 Concentric Lozenge Squares.
18.4.2 Concentric Magic Squares (Diamond Inlays)
The defining equations for a 5 x 5 Diamond Inlay suitable for order 9 Concentric Lozenge Squares are a(58) = - s1/9 - a(59) - a(60) + a(67) + a(69) + 2 * a(77) a(57) = 6*s1/9 - a(61) - a(67) - a(69) - 2 * a(77) a(50) = -3*s1/9 + 2 * a(59) + a(67) + a(69) a(49) = 6*s1/9 - a(51) - 2 * a(59) - a(67) - a(69) a(45) = 5*s1/9 - a(53) - a(61) - a(69) - a(77) a(43) = 5*s1/9 - a(51) - a(53) - a(59) - a(69) a(42) = 7*s1/9 - 2 * a(51) - 2 * a(59) - a(67) - a(69) a(35) = a(53) - a(67) + a(69) a(34) = 4*s1/9 + a(51) - a(52) + a(53) + a(59) - 2 * a(61) - a(67) - 2 * a(77)
With a(44), a(51), a(52), a(53), a(59), a(60), a(61), a(67), a(68), a(69), a(77) the independent variables,
Concentric Lozenge Squares with order 5 Diamond Inlays can be constructed as follows:
Attachment 18.4.5 shows miscellaneous suitable order 5 Diamond Inlays with odd numbers
(ref. Diamond5).
18.4.3 Associated Magic Squares (Diamond Inlays)
Associated Lozenge Squares of order 9, with Associated Diamond Inlays of order 4 and 5 as shown in following example (L.S. Frierson):
can be constructed as follows:
Both the order 4 and 5 Diamond Inlays contain only odd numbers, as can be seen in the example above.
a9( 7) = 369 - a9(16) - a9(25) - a9(34) - a9(43) - a9(52) - a9(61) - a9(70) - a9(79) a9( 8) = 369 - a9(17) - a9(26) - a9(35) - a9(44) - a9(53) - a9(62) - a9(71) - a9(80) a9(18) = 369 - a9( 9) - a9(27) - a9(36) - a9(45) - a9(54) - a9(63) - a9(72) - a9(81) a9(19) = 369 - a9(20) - a9(21) - a9(22) - a9(23) - a9(24) - a9(25) - a9(26) - a9(27) a9(54) = 369 - a9(46) - a9(47) - a9(48) - a9(49) - a9(50) - a9(51) - a9(52) - a9(53) a9(72) = (410 - a9( 9) - a9(81) + a9(17) - a9(71) - a9(45) + a9(46) - a9(54) + a9(55) - a9(63) - a9(66) - a9(67) - a9(68) - a9(69) - a9(70)) / 2 a9(73) = 369 - a9(74) - a9(75) - a9(76) - a9(77) - a9(78) - a9(79) - a9(80) - a9(81) a9(76) = 369 - a9( 4) - a9(13) - a9(22) - a9(31) - a9(40) - a9(49) - a9(58) - a9(67)
with a9(16), a9(17), a9(20), a9(26), a9(27), a9(36), a9(70), a9(71) and a9(78) thru a9(81) the independent variables.
18.4.4 Associated Magic Squares (L.S. Frierson)
A more detailed observation of the Associated Lozenge Square with order 4 and 5 Diamond Inlays, as published by L.S. Frierson:
learns that subject square has following additional properties:
After incorporation of subject properties, routine Priem4d2 generated numerous
order 4 Diamond Inlays with the properties described above, of which a few are shown in Attachment 18.4.22.
18.4.5 Associated Magic Squares (La Hire)
Associated Lozenge Squares can be constructed based on Latin Squares (B1/B2) as illustrated below (La Hire): |
B1
5 6 7 8 0 1 2 3 4 6 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 6 8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 0 2 3 4 5 6 7 8 0 1 3 4 5 6 7 8 0 1 2 4 5 6 7 8 0 1 2 3 B2 (B1 Mirrored)
4 3 2 1 0 8 7 6 5 5 4 3 2 1 0 8 7 6 6 5 4 3 2 1 0 8 7 7 6 5 4 3 2 1 0 8 8 7 6 5 4 3 2 1 0 0 8 7 6 5 4 3 2 1 1 0 8 7 6 5 4 3 2 2 1 0 8 7 6 5 4 3 3 2 1 0 8 7 6 5 4 M = B1 + 9 * B2 + 1
42 34 26 18 1 74 66 58 50 52 44 36 19 11 3 76 68 60 62 54 37 29 21 13 5 78 70 72 55 47 39 31 23 15 7 80 73 65 57 49 41 33 25 17 9 2 75 67 59 51 43 35 27 10 12 4 77 69 61 53 45 28 20 22 14 6 79 71 63 46 38 30 32 24 16 8 81 64 56 48 40
The resulting Lozenge Square M corresponds with 16 Lozenge Squares, which
can be obtained by exchange of row and column n with (10 - n), as shown in Attachment Lozenge 9.3.
18.6 Lozenge Squares (11 x 11)
18.6.1 Concentric Magic Squares
The Concentric Center Squares of a Concentric Lozenge Square of the eleventh order have following properties:
as illustrated in following example:
Concentric Lozenge Squares of order 11 can be constructed as follows:
Routine Priem3a generated 1600 (200 unique) order 3 Center Squares with odd numbers (s1 = 183).
Both values are only a fraction of the total possible number of order 11 Concentric Lozenge Squares.
18.6.2 Concentric Magic Squares (Diamond Inlays)
The defining equations for a 6 x 6 Diamond Inlay suitable for order 11 Concentric Lozenge Squares are a(92) = 6*s1/11 - a(96) - a(104) - a(106) - 2 * a(116) a(91) = s1/11 - a(93) - a(94) - a(95) - a(97) + a(104) + a(106) + 2 * a(116) a(82) = 6*s1/11 - a(84) - 2 * a(94) - a(104) - a(106) a(81) = - s1/11 - a(83) - a(85) + 2 * a(94) + a(104) + a(106) a(73) = - s1/11 + 0.5 * a(74) + 0.5 * a(84) + 0.5 * a(86) + 0.5 * a(96) a(72) = -3*s1/11 + a(94) + a(104) + a(106) + a(116) a(71) = 7*s1/11 - 0.5 * a(74) - 0.5 * a(84) - 0.5 * a(86) - a(94) - 0.5 * a(96) - a(104) - a(106) - a(116) a(66) = 6*s1/11 - a(76) - a(86) - a(96) - a(106) - a(116) a(63) = p2 + a(64) - a(74) + a(76) - a(83) - a(84) - 2 * a(85) + a(94) + a(106) a(62) = 9*s1/11 - a(74) - a(84) - a(86) - a(94) - a(96) - a(104) - a(106) - a(116) a(54) = 6*s1/11 - a(64) - a(74) - a(84) - a(94) - a(104) a(53) = 17*s1/11 - 2 * a(64) - a(74) - a(75) - a(76) - a(84) - 2*a(86) + a(91) + - a(94) - 2*a(96) - a(97) - a(104) - 2*a(106) - 2*a(116) a(52) = - a(64) - a(76) + a(84) + a(94) + a(104) a(42) = -12*s1/11 + a(64) + a(74) + a(76) + a(84) + a(86) + a(94) + 2 * a(96) + a(104) + 2 * a(106) + 2 * a(116)
With the independent variables:
Concentric Lozenge Squares with order 6 Diamond Inlays can be constructed as follows:
Attachment 18.4.7 shows miscellaneous suitable order 6 Diamond Inlays with odd numbers and
the four (even) corner points of the order 7 concentric squares
(ref. Diamond6).
18.6.3 Associated Magic Squares (Diamond Inlays)
Associated Lozenge Squares of order 11, with Associated Diamond Inlays of order 5 and 6 as shown in following example:
can be constructed as follows:
Both the order 5 and 6 Diamond Inlays contain only odd numbers, as can be seen in the example above.
a(115) = s1 - a( 5) - a( 16) - a( 27) - a( 38) - a( 49) - a( 60) - a( 71) - a( 82) - a( 93) - a(104) a( 55) = s1 - a( 45) - a( 46) - a( 47) - a( 48) - a( 49) - a( 50) - a( 51) - a( 52) - a( 53) - a( 54) a(118) = s4 - a(119) - a(120) - a(121) a(103) = s1 - a( 4) - a( 15) - a( 26) - a( 37) - a( 48) - a( 59) - a( 70) - a( 81) - a( 92) - a(114) a( 88) = s4 - a( 99) - a(110) - a(121) a( 87) = s1 - a( 78) - a( 79) - a( 80) - a( 81) - a( 82) - a( 83) - a( 84) - a( 85) - a( 86) - a( 88) a(113) = s1 - a(111) - a(112) - a(114) - a(115) - a(116) - a(117) - a(118) - a(119) - a(120) - a(121) a( 89) = s1 - a( 1) - a( 12) - a( 23) - a( 34) - a( 45) - a( 56) - a( 67) - a( 78) - a(100) - a(111) a(101) = s1 - a(100) - a(102) - a(103) - a(104) - a(105) - a(106) - a(107) - a(108) - a(109) - a(110) a( 90) = s1 - a( 2) - a( 13) - a( 24) - a( 35) - a( 46) - a( 57) - a( 68) - a( 79) - a(101) - a(112) a( 97) =(2*s1/11 - a(9)- a( 20) + a( 23) + a( 24) + a( 26) + a( 27) + a( 28) + a( 29) + a( 30) + a( 32) + + a(33) - a(42) - a(53) - a(64) - a(75) - a(86) - a(108) - a(119)) / 2 a( 91) = s1 - a( 97) - a( 89) - a( 90) - a( 92) - a( 93) - a( 94) - a( 95) - a( 96) - a( 98) - a( 99)
with the independent variables:
18.6.4 Associated Magic Squares (La Hire)
Associated Lozenge Squares can be constructed based on Latin Squares (B1/B2) as illustrated below (La Hire): |
B1
6 7 8 9 10 0 1 2 3 4 5 7 8 9 10 0 1 2 3 4 5 6 8 9 10 0 1 2 3 4 5 6 7 9 10 0 1 2 3 4 5 6 7 8 10 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4 5 6 7 8 9 10 0 1 3 4 5 6 7 8 9 10 0 1 2 4 5 6 7 8 9 10 0 1 2 3 5 6 7 8 9 10 0 1 2 3 4 B2 (B1 Mirrored)
5 4 3 2 1 0 10 9 8 7 6 6 5 4 3 2 1 0 10 9 8 7 7 6 5 4 3 2 1 0 10 9 8 8 7 6 5 4 3 2 1 0 10 9 9 8 7 6 5 4 3 2 1 0 10 10 9 8 7 6 5 4 3 2 1 0 0 10 9 8 7 6 5 4 3 2 1 1 0 10 9 8 7 6 5 4 3 2 2 1 0 10 9 8 7 6 5 4 3 3 2 1 0 10 9 8 7 6 5 4 4 3 2 1 0 10 9 8 7 6 5 M = B1 + 11* B2 + 1
62 52 42 32 22 1 112 102 92 82 72 74 64 54 44 23 13 3 114 104 94 84 86 76 66 45 35 25 15 5 116 106 96 98 88 67 57 47 37 27 17 7 118 108 110 89 79 69 59 49 39 29 19 9 120 111 101 91 81 71 61 51 41 31 21 11 2 113 103 93 83 73 63 53 43 33 12 14 4 115 105 95 85 75 65 55 34 24 26 16 6 117 107 97 87 77 56 46 36 38 28 18 8 119 109 99 78 68 58 48 50 40 30 20 10 121 100 90 80 70 60
The resulting Lozenge Square M corresponds with 32 Lozenge Squares, which
can be obtained by exchange of row and column n with (12 - n), as shown in Attachment Lozenge 11.1.
The obtained results regarding the miscellaneous types of Lozenge Squares as deducted and discussed in previous sections are summarized in following table: |
Order
Characteristics
Subroutine
Examples
Total Number
Notes
5
Simple Magic
-
306416
a(13)=13
Associated
6912
-
Concentric
3264
Note 1
Magic/Diamond Inlay
1856
-
Associated/Diamond Inlay
48
-
Concentric/Diamond Inlay
992
-
Magic/Square Inlay
27136
-
Magic/Square + Diamond Inlay
160
-
7
Concentric
-
-
Associated, Diamond Inlays
53980
a(28)=1
9
Concentric
-
-
Concentric, Diamond Inlays
-
-
Associated, Diamond Inlays (1)
-
-
Associated, Diamond Inlays (2)
-
-
Associated, Latin Square Based
-
-
-
11
Concentric
-
-
Concentric, Diamond Inlays
-
-
Associated, Diamond Inlays
-
-
Associated, Latin Square Based
-
-
-
Note 1: Based on 4 unique Center Squares
|
Index | About the Author |