Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
B1
7 8 9 10 11 12 0 1 2 3 4 5 6 8 9 10 11 12 0 1 2 3 4 5 6 7 9 10 11 12 0 1 2 3 4 5 6 7 8 10 11 12 0 1 2 3 4 5 6 7 8 9 11 12 0 1 2 3 4 5 6 7 8 9 10 12 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 0 2 3 4 5 6 7 8 9 10 11 12 0 1 3 4 5 6 7 8 9 10 11 12 0 1 2 4 5 6 7 8 9 10 11 12 0 1 2 3 5 6 7 8 9 10 11 12 0 1 2 3 4 6 7 8 9 10 11 12 0 1 2 3 4 5 B2 (B1 Mirrored)
6 5 4 3 2 1 0 12 11 10 9 8 7 7 6 5 4 3 2 1 0 12 11 10 9 8 8 7 6 5 4 3 2 1 0 12 11 10 9 9 8 7 6 5 4 3 2 1 0 12 11 10 10 9 8 7 6 5 4 3 2 1 0 12 11 11 10 9 8 7 6 5 4 3 2 1 0 12 12 11 10 9 8 7 6 5 4 3 2 1 0 0 12 11 10 9 8 7 6 5 4 3 2 1 1 0 12 11 10 9 8 7 6 5 4 3 2 2 1 0 12 11 10 9 8 7 6 5 4 3 3 2 1 0 12 11 10 9 8 7 6 5 4 4 3 2 1 0 12 11 10 9 8 7 6 5 5 4 3 2 1 0 12 11 10 9 8 7 6 M = B1 + 13* B2 + 1
86 74 62 50 38 26 1 158 146 134 122 110 98 100 88 76 64 52 27 15 3 160 148 136 124 112 114 102 90 78 53 41 29 17 5 162 150 138 126 128 116 104 79 67 55 43 31 19 7 164 152 140 142 130 105 93 81 69 57 45 33 21 9 166 154 156 131 119 107 95 83 71 59 47 35 23 11 168 157 145 133 121 109 97 85 73 61 49 37 25 13 2 159 147 135 123 111 99 87 75 63 51 39 14 16 4 161 149 137 125 113 101 89 77 65 40 28 30 18 6 163 151 139 127 115 103 91 66 54 42 44 32 20 8 165 153 141 129 117 92 80 68 56 58 46 34 22 10 167 155 143 118 106 94 82 70 72 60 48 36 24 12 169 144 132 120 108 96 84
The resulting Lozenge Square M corresponds with 64 Lozenge Squares, which
can be obtained by exchange of row and column n with (14 - n),
and include for each square the 180o rotated aspect.
18.7.2 Concentric Magic Squares
The Concentric Center Squares of an order 13 Concentric Lozenge Square have following properties:
as illustrated in following example:
It should be noticed that the 13 x 13 Concentric Border is a conversion of the 13 x 13 Associated Border as applied in Section 18.7.1 above.
Routine Priem3a1 generated 2912 (364 unique) order 3 Center Squares with odd numbers (s1 = 255).
Both values are only a fraction of the total possible number of order 13 Concentric Lozenge Squares.
18.7.3 Concentric Magic Squares (Diamond Inlays)
The defining equations for a 7 x 7 Diamond Inlay suitable for order 13 Concentric Lozenge Squares are a(121) = 8 * s1/13 - a(127) - a(135) - a(139) - a(149) - a(151) - 2 * a(163) a(122) = - s1/13 - a(123) - a(124) - a(125) - a(126) + a(135) + a(139) + a(149) + a(151) + 2 * a(163) a(109) = 8 * s1/13 - a(113) - a(123) - a(125) - 2 * a(137) - a(149) - a(151) a(110) = -3 * s1/13 - a(111) - a(112) + a(123) + a(125) + 2 * a(137) + a(149) + a(151) a( 98) = 3 * s1/13 - a(109) + 2 * a(111) - a(113) + a(135) - 2 * a(137) + a(139) - a(149) - a(151) a( 91) = 7 * s1/13 - a(103) - a(115) - a(127) - a(139) - a(151) - a(163) a( 97) = 8 * s1/13 - a( 99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139) a( 87) = 15 * s1/13 - a( 99) - a(101) - a(111) - a(115) - a(121) - a(125) - a(127) - a(135) - 2 * a(139) + - a(149) - a(151) - 2*a(163) a( 86) = 9 * s1/13 - 2 * a(99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139) a( 74) = 4 * s1/13 + a( 99) - a(100) + a(101) + a(111) - 2 * a(113) + a(115) - a(123) - 2 * a(137) + + a(139) - a(149) - a(151) a( 77) = 7 * s1/13 - a( 89) - a(101) - a(113) - a(125) - a(137) - a(149) a( 75) = 7 * s1/13 - a( 89) - a(103) - a(113) - a(123) - a(137) - a(151) a( 63) = -8 * s1/13 + a( 89) + a(101) + a(103) + a(113) + a(115) - a(122) - a(123) - a(124) - a(126) + + a(137) + 2 * a(139) + a(149) + 2 * a(151) + 2*a(163) a( 62) = 12 * s1/13 - a( 75) - a( 88) - a(101) - a(114) - a(122) - a(123) - a(124) - a(125) - a(126) - 2*a(127)
With the independent variables:
Concentric Lozenge Squares with order 7 Diamond Inlays can be constructed as follows:
Attachment 18.7.7 shows miscellaneous suitable order 7 Diamond Inlays with odd numbers
(ref. Diamond7).
As both values are only a fraction of the total possible number of diamond inlays and resulting borders,
the total number of order 13 Concentric Lozenge Squares with Diamond Inlays is beyond imagination.
18.7.4 Associated Magic Squares (Diamond Inlays)
Associated Lozenge Squares of order 13, with Associated Diamond Inlays of order 6 and 7 as shown in following example:
can be constructed as follows:
Both the order 6 and 7 Diamond Inlays contain only odd numbers, as can be seen in the example above.
a(162) = s1 - a( 6) - a( 19) - a( 32) - a( 45)-a( 58)-a( 71)-a( 84)-a( 97) - a(110) - a(123) - a(136) - a(149) a(161) = s5 - a(162) - a(163) - a(164) - a(165) a(148) = s1 - a( 5) - a( 18) - a( 31) - a( 44)-a( 57)-a( 70)-a( 83)-a( 96) - a(109) - a(122) - a(135) - a(161) a( 78) = s1 - a( 66) - a( 67) - a( 68) - a( 69)-a( 70)-a( 71)-a( 72)-a( 73) - a( 74) - a( 75) - a( 76) - a( 77) a(116) = s1 - a(105) - a(106) - a(107) - a(108)-a(109)-a(110)-a(111)-a(112) - a(113) - a(114) - a(115) - a(117) a(166) = s4 - a(167) - a(168) - a(169) a(130) = s4 - a(143) - a(156) - a(169) a(153) = s4 - a(154) - a(155) - a(156) a(129) = s4 - a(142) - a(155) - a(168) a(160) = s4 - a(159) - a(158) - a(157) a(118) = s1 - a( 1) - a( 14) - a( 27) - a( 40)-a( 53)-a( 66)-a( 79)-a( 92) - a(105) - a(131) - a(144) - a(157) a(147) = s1 - a(144) - a(145) - a(146) - a(148)-a(149)-a(150)-a(151)-a(152) - a(153) - a(154) - a(155) - a(156) a(119) = s1 - a( 2) - a( 15) - a( 28) - a( 41)-a( 54)-a( 67)-a( 80)-a( 93) - a(106) - a(132) - a(145) - a(158) a( 50) = s1 - a( 40) - a( 41) - a( 42) - a( 43)-a( 44)-a( 45)-a( 46)-a( 47) - a( 48) - a( 49) - a( 51) - a( 52) a(133) = s1 - a( 3) - a( 16) - a( 29) - a( 42)-a( 55)-a( 68)-a( 81)-a( 94) - a(107) - a(120) - a(146) - a(159) a(140) =(p2 - a(10) - a(23) + a(27) + a(28) + a(29) + a(31) + a( 32) + a( 33) + a( 34) + a( 35) + a( 37) + + a(38) + a(39) - a(49) - a(62) - a(75) - a(88) - a(101) - a(114) - a(127) - a(153) - a(166)) / 2 a(134) = s1 - a(140) - a(131) - a(132) - a(133)-a(135)-a(136)-a(137)-a(138) - a(139) - a(141) - a(142) - a(143)
with the independent variables:
18.8 Lozenge Squares (15 x 15)
18.8.1 Associated Magic Squares (La Hire)
Associated Lozenge Squares can be constructed based on Latin Squares (B1/B2) as illustrated below (La Hire): |
B1
8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 B2 (B1 Mirrored)
7 6 5 4 3 2 1 0 14 13 12 11 10 9 8 8 7 6 5 4 3 2 1 0 14 13 12 11 10 9 9 8 7 6 5 4 3 2 1 0 14 13 12 11 10 10 9 8 7 6 5 4 3 2 1 0 14 13 12 11 11 10 9 8 7 6 5 4 3 2 1 0 14 13 12 12 11 10 9 8 7 6 5 4 3 2 1 0 14 13 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0 14 13 12 11 10 9 8 7 6 5 4 3 2 2 1 0 14 13 12 11 10 9 8 7 6 5 4 3 3 2 1 0 14 13 12 11 10 9 8 7 6 5 4 4 3 2 1 0 14 13 12 11 10 9 8 7 6 5 5 4 3 2 1 0 14 13 12 11 10 9 8 7 6 6 5 4 3 2 1 0 14 13 12 11 10 9 8 7 M = B1 + 15* B2 + 1
114 100 86 72 58 44 30 1 212 198 184 170 156 142 128 130 116 102 88 74 60 31 17 3 214 200 186 172 158 144 146 132 118 104 90 61 47 33 19 5 216 202 188 174 160 162 148 134 120 91 77 63 49 35 21 7 218 204 190 176 178 164 150 121 107 93 79 65 51 37 23 9 220 206 192 194 180 151 137 123 109 95 81 67 53 39 25 11 222 208 210 181 167 153 139 125 111 97 83 69 55 41 27 13 224 211 197 183 169 155 141 127 113 99 85 71 57 43 29 15 2 213 199 185 171 157 143 129 115 101 87 73 59 45 16 18 4 215 201 187 173 159 145 131 117 103 89 75 46 32 34 20 6 217 203 189 175 161 147 133 119 105 76 62 48 50 36 22 8 219 205 191 177 163 149 135 106 92 78 64 66 52 38 24 10 221 207 193 179 165 136 122 108 94 80 82 68 54 40 26 12 223 209 195 166 152 138 124 110 96 98 84 70 56 42 28 14 225 196 182 168 154 140 126 112
The resulting Lozenge Square M corresponds with 128 Lozenge Squares, which
can be obtained by exchange of row and column n with (16 - n),
and include for each square the 180o rotated aspect included.
18.8.2 Concentric Magic Squares
The Concentric Center Squares of an order 15 Concentric Lozenge Square have following properties:
as illustrated in following example:
It should be noticed that the two exterior Concentric Borders (order 13 and 15) are deducted from the Associated Borders as applied in Section 18.8.1 above.
Routine Priem3a2 generated 3976 (497 unique) order 3 Center Squares with odd numbers (s1 = 339).
Both values are only a fraction of the total possible number of order 15 Concentric Lozenge Squares.
18.8.3 Concentric Magic Squares (Diamond Inlays)
The defining equations for an 8 x 8 Diamond Inlay - composed out of four each 4 x 4 Diamond Inlays - suitable for order 15 Concentric Lozenge Squares are: a(176) = 4*s1/15 - a(190) - a(204) - a(218) a(160) = 4*s1/15 - a(174) - a(188) - a(202) a(144) = 4*s1/15 - a(158) - a(172) - a(186) a(170) = 4*s1/15 - a(186) - a(202) - a(218) a(156) = 4*s1/15 - a(172) - a(188) - a(204) a(142) = 4*s1/15 - a(158) - a(174) - a(190) a(128) = 4*s1/15 - a(142) - a(156) - a(170) a(120) = 4*s1/15 - a(134) - a(148) - a(162) a(104) = 4*s1/15 - a(118) - a(132) - a(146) a( 88) = 4*s1/15 - a(102) - a(116) - a(130) a(114) = 4*s1/15 - a(130) - a(146) - a(162) a(100) = 4*s1/15 - a(116) - a(132) - a(148) a( 86) = 4*s1/15 - a(102) - a(118) - a(134) a( 72) = 4*s1/15 - a( 88) - a(104) - a(120) a(155) = 3*s1/15-a(157)-a(159)-a(161)-a(86)-a(102)-a(118)-a(134)-a(158)+a(172)+a(174)+2*a(188)+a(202)+a(204) a(141) = s1/15-a(143)-a(145)-a(100)-a(116)-a(132)-a(148)+2*a(158)+a(172)+a(186)+a(174)+a(190) a(129) = -12*s1/15+.5*a(72)+.5*a(86)+a(100)-.5*a(88)-.5*a(102)-.5*a(130)+.5*a(104)+.5*a(118)+a(132)+.5*a(146) + +.5*a(148)-.5*a(128)+1.5*a(142)+.5*a(170)+1.5*a(158)+.5*a(186)+1.5*a(174)+.5*a(202)+.5*a(176) + + 2*a(190)+.5*a(204)+a(218) a(127) = - 9*s1/15-.5*a(72)-.5*a(86)-.5*a(88)-.5*a(102)-.5*a(130)+.5*a(104)+.5*a(118)+a(132)+.5*a(146)+.5*a(148) + +.5*a(128)+.5*a(142)+.5*a(170)+a(144)+.5*a(158)+.5*a(186)+a(160)+.5*a(174)+.5*a(202)+1.5*a(176) + + a(190)+.5*a(204)+a(218) a(115) = 4*s1/15-a(143)-2*a(145)+a(86)-2*a(100)+a(102)-a(116)-a(130)+a(118)-a(132)+a(134)-a(148)+2*a(158)+a(172) + +a(186)-a(160)-a(188)-a(202)+a(190) a(101) = 8*s1/15-a(131)-a(157)-a(159)-2*a(161)+a(72)-2*a(86)+a(88)-a(102)-a(116)+a(104)-a(118)-a(146)+a(120) + -a(134)-a(158)+a(172)+a(174)+2*a(188)+a(202)-a(176)-a(190)-a(218) a( 87) = 12*s1/15-a(117)-a(147)-a(171)-a(173)-a(175)-2*a(177)-2*a(72)-a(88)-a(102)-a(104)-a(132)-a(120)-a(162) + -a(172)+a(186)-a(174)+a(202)+a(190)+a(204)+2*a(218)
With the independent variables:
Concentric Lozenge Squares with order 8 Diamond Inlays can be constructed as follows:
Attachment 18.8.7 shows miscellaneous suitable order 8 Diamond Inlays with odd numbers
(ref. Diamond8).
As both values are only a fraction of the total possible number of diamond inlays and resulting borders,
the total number of order 15 Concentric Lozenge Squares with Diamond Inlays is beyond imagination.
The obtained results regarding the miscellaneous types of Lozenge Squares as deducted and discussed in previous sections are summarized in following table: |
Order
Characteristics
Subroutine
Examples
Total Number
Notes
13
Concentric
-
-
Note 1
Concentric, Diamond Inlays
-
-
Associated, Diamond Inlays
-
-
Associated, Latin Square Based
-
-
-
15
Concentric
-
-
Note 2
Concentric, Diamond Inlays
-
-
Associated, Latin Square Based
-
-
-
Note 1: Constructed border order 13 |
Index | About the Author |