Office Applications and Entertainment, Magic Squares |
||
Exhibit P08 | About the Author |
P08
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60 a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72 a73 a74 a75 a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 a87 a88 a89 a90 a91 a92 a93 a94 a95 a96 a97 a98 a99 a100 a101 a102 a103 a104 a105 a106 a107 a108 a109 a110 a111 a112 a113 a114 a115 a116 a117 a118 a119 a120 a121 a122 a123 a124 a125 a126 a127 a128 a129 a130 a131 a132 a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144 a145 a146 a147 a148 a149 a150 a151 a152 a153 a154 a155 a156 a157 a158 a159 a160 a161 a162 a163 a164 a165 a166 a167 a168 a169 Defining Equations
a( 15) = 340 - a( 19) - a( 67) - a(71) a( 21) = 340 - a( 25) - a( 77) - a(73) a( 93) = 340 - a(145) - a(149) - a(97) a(103) = 340 - a(151) - a(155) - a(99) a( 15) = 170 - a(155) a( 25) = 170 - a(145) a( 71) = 170 - a( 99) a( 73) = 170 - a( 97) a( 19) = 170 - a(149) a( 21) = 170 - a(151) a( 67) = 170 - a( 77) a( 93) = 170 - a(103)Reduced Equations
a( 73) = 170 - a( 97) a( 71) = 170 - a( 99) a(145) = 170 - a(149) - a(151) - a(155)+a(71)+a(73) a(103) = 340 - a(151) - a(155) - a( 99) a( 77) = 170 - a(149) - a(155) + a( 71) a( 15) = 170 - a(155) a( 25) = 170 - a(145) a( 19) = 170 - a(149) a( 21) = 170 - a(151) a( 67) = 170 - a( 77) a( 93) = 170 - a(103)
The reduced equations can be incorporated in a guessing routine (Priem4b) which
The applied range (order 11 border) results from the construction method based on Semi Latin Squares:
{15 ... 25, 28, 38, 41, 51, 54, 64, 67, 77, 80
as deducted in Section 13.2.4.
Construction Quadrant P08 Bordered Magic Squares
While starting with a preselected Associated Compact Pan Magic Square (ref. Section 9.5.4): |
Ass Comp PM
81 32 10 26 58 39 52 6 65 40 21 62 69 47 7 14 73 36 2 70 51 28 18 77 57 44 22 66 53 4 11 79 33 37 27 59 34 15 74 63 41 19 8 67 48 23 55 45 49 3 71 78 29 16 60 38 25 5 64 54 31 12 80 46 9 68 75 35 13 20 61 42 17 76 30 43 24 56 72 50 1 A9
8 4 0 7 3 2 6 5 1 3 2 7 5 1 6 4 0 8 1 6 5 0 8 4 2 7 3 2 7 3 1 6 5 0 8 4 6 5 1 8 4 0 7 3 2 4 0 8 3 2 7 5 1 6 5 1 6 4 0 8 3 2 7 0 8 4 2 7 3 1 6 5 7 3 2 6 5 1 8 4 0 B9
8 3 1 2 6 4 5 0 7 4 2 6 7 5 0 1 8 3 0 7 5 3 1 8 6 4 2 7 5 0 1 8 3 4 2 6 3 1 8 6 4 2 0 7 5 2 6 4 5 0 7 8 3 1 6 4 2 0 7 5 3 1 8 5 0 7 8 3 1 2 6 4 1 8 3 4 2 6 7 5 0
a suitable Associated Compact Pan Magic Centre Square can be constructed:
M9' = A9' + 13 * B9' + 1
141 72 42 62 110 83 100 34 121 84 57 114 125 95 35 46 133 76 30 126 99 68 50 137 109 88 58 122 101 32 43 139 73 81 63 111 74 47 134 115 85 55 36 123 96 59 107 89 97 31 127 138 69 48 112 82 61 33 120 102 71 44 140 94 37 124 135 75 45 56 113 86 49 136 70 87 60 108 128 98 29 A9'
10 6 2 9 5 4 8 7 3 5 4 9 7 3 8 6 2 10 3 8 7 2 10 6 4 9 5 4 9 5 3 8 7 2 10 6 8 7 3 10 6 2 9 5 4 6 2 10 5 4 9 7 3 8 7 3 8 6 2 10 5 4 9 2 10 6 4 9 5 3 8 7 9 5 4 8 7 3 10 6 2 B9'
10 5 3 4 8 6 7 2 9 6 4 8 9 7 2 3 10 5 2 9 7 5 3 10 8 6 4 9 7 2 3 10 5 6 4 8 5 3 10 8 6 4 2 9 7 4 8 6 7 2 9 10 5 3 8 6 4 2 9 7 5 3 10 7 2 9 10 5 3 4 8 6 3 10 5 6 4 8 9 7 2
Based on this centre square and the applicable set of key variables, a partly completed order 11 Bordered Magic Square can be constructed:
which can be completed with a guessing routine (Priem11a) based on the remaining integers:
By applying an exterior border as constructed for Quadrant P14 Bordered Magic Squares, the resulting square will be Quadrant (P08, P24) Magic:
The square shown above corresponds with
8 * (10!)2 *
(7!)2 *
n9 Quadrant (P08, P14) Bordered Magic Squares
(n9 = all suitable order 9 centre squares).
|
About the Author |