Office Applications and Entertainment, Magic Squares of Subtraction

Vorige Pagina Attachment 16 About the Author

1 Construction of Magic Squares of Subtraction (16 x 16)

Associated, Res16 = 32, Pair Sum = 257

With square B Associated Magic and square A Associated, the resulting square C will be an Associated Magic Square of Subtraction, as illustrated below:

A, Res4 = 8
16 7 14 13
11 12 9 2
15 8 5 6
4 3 10 1
C, Res16 = 32, Pair Sum = 257
256 247 254 253
251 252 249 242
255 248 245 246
244 243 250 241
144 135 142 141
139 140 137 130
143 136 133 134
132 131 138 129
80 71 78 77
75 76 73 66
79 72 69 70
68 67 74 65
64 55 62 61
59 60 57 50
63 56 53 54
52 51 58 49
48 39 46 45
43 44 41 34
47 40 37 38
36 35 42 33
96 87 94 93
91 92 89 82
95 88 85 86
84 83 90 81
160 151 158 157
155 156 153 146
159 152 149 150
148 147 154 145
240 231 238 237
235 236 233 226
239 232 229 230
228 227 234 225
32 23 30 29
27 28 25 18
31 24 21 22
20 19 26 17
112 103 110 109
107 108 105 98
111 104 101 102
100 99 106 97
176 167 174 173
171 172 169 162
175 168 165 166
164 163 170 161
224 215 222 221
219 220 217 210
223 216 213 214
212 211 218 209
208 199 206 205
203 204 201 194
207 200 197 198
196 195 202 193
192 183 190 189
187 188 185 178
191 184 181 182
180 179 186 177
128 119 126 125
123 124 121 114
127 120 117 118
116 115 122 113
16 7 14 13
11 12 9 2
15 8 5 6
4 3 10 1
B, s4 = 34
16 9 5 4
3 6 10 15
2 7 11 14
13 12 8 1

With 384 possible squares for B and n4 for Cj (j = 1 ... 16), the resulting number of 16th order Associated Squares of Subtraction with Res16 = 32 will be 384 * n416 with n4 = 8 * 8 (ref. Attachment 4.1).

2 Construction of Magic Squares of Subtraction (16 x 16)

Res16 = 32, Main - and Broken Diagonals sum to s16 = 2056

With square B Pan Magic and square A Pan Magic, the resulting square C will be a Magic Square of Subtraction with Pan Magic Diagonals, as illustrated below:

A, Res4 = 8
12 8 2 14
3 15 9 5
16 4 6 10
7 11 13 1
C, Res16 = 32, s16 = 2056
188 184 178 190
179 191 185 181
192 180 182 186
183 187 189 177
204 200 194 206
195 207 201 197
208 196 198 202
199 203 205 193
44 40 34 46
35 47 41 37
48 36 38 42
39 43 45 33
92 88 82 94
83 95 89 85
96 84 86 90
87 91 93 81
108 104 98 110
99 111 105 101
112 100 102 106
103 107 109 97
28 24 18 30
19 31 25 21
32 20 22 26
23 27 29 17
252 248 242 254
243 255 249 245
256 244 246 250
247 251 253 241
140 136 130 142
131 143 137 133
144 132 134 138
135 139 141 129
220 216 210 222
211 223 217 213
224 212 214 218
215 219 221 209
172 168 162 174
163 175 169 165
176 164 166 170
167 171 173 161
76 72 66 78
67 79 73 69
80 68 70 74
71 75 77 65
60 56 50 62
51 63 57 53
64 52 54 58
55 59 61 49
12 8 2 14
3 15 9 5
16 4 6 10
7 11 13 1
124 120 114 126
115 127 121 117
128 116 118 122
119 123 125 113
156 152 146 158
147 159 153 149
160 148 150 154
151 155 157 145
236 232 226 238
227 239 233 229
240 228 230 234
231 235 237 225
B, s4 = 34
12 13 3 6
7 2 16 9
14 11 5 4
1 8 10 15

With 384 possible squares for B and n4 for Cj (j = 1 ... 16), the resulting number of 16th order Squares of Subtraction with Res16 = 32 will be 384 * n416 with n4 = 8 * 24 (ref. Attachment 4.2).


Vorige Pagina About the Author