1 Construction of Magic Squares of Subtraction (16 x 16)
Associated, Res16 = 32, Pair Sum = 257
With square B Associated Magic and
square A Associated,
the resulting square C will be an Associated Magic Square of Subtraction,
as illustrated below:
A, Res4 = 8
16 |
7 |
14 |
13 |
11 |
12 |
9 |
2 |
15 |
8 |
5 |
6 |
4 |
3 |
10 |
1 |
|
C, Res16 = 32, Pair Sum = 257
256 |
247 |
254 |
253 |
251 |
252 |
249 |
242 |
255 |
248 |
245 |
246 |
244 |
243 |
250 |
241 |
|
144 |
135 |
142 |
141 |
139 |
140 |
137 |
130 |
143 |
136 |
133 |
134 |
132 |
131 |
138 |
129 |
|
80 |
71 |
78 |
77 |
75 |
76 |
73 |
66 |
79 |
72 |
69 |
70 |
68 |
67 |
74 |
65 |
|
64 |
55 |
62 |
61 |
59 |
60 |
57 |
50 |
63 |
56 |
53 |
54 |
52 |
51 |
58 |
49 |
|
48 |
39 |
46 |
45 |
43 |
44 |
41 |
34 |
47 |
40 |
37 |
38 |
36 |
35 |
42 |
33 |
|
96 |
87 |
94 |
93 |
91 |
92 |
89 |
82 |
95 |
88 |
85 |
86 |
84 |
83 |
90 |
81 |
|
160 |
151 |
158 |
157 |
155 |
156 |
153 |
146 |
159 |
152 |
149 |
150 |
148 |
147 |
154 |
145 |
|
240 |
231 |
238 |
237 |
235 |
236 |
233 |
226 |
239 |
232 |
229 |
230 |
228 |
227 |
234 |
225 |
|
32 |
23 |
30 |
29 |
27 |
28 |
25 |
18 |
31 |
24 |
21 |
22 |
20 |
19 |
26 |
17 |
|
112 |
103 |
110 |
109 |
107 |
108 |
105 |
98 |
111 |
104 |
101 |
102 |
100 |
99 |
106 |
97 |
|
176 |
167 |
174 |
173 |
171 |
172 |
169 |
162 |
175 |
168 |
165 |
166 |
164 |
163 |
170 |
161 |
|
224 |
215 |
222 |
221 |
219 |
220 |
217 |
210 |
223 |
216 |
213 |
214 |
212 |
211 |
218 |
209 |
|
208 |
199 |
206 |
205 |
203 |
204 |
201 |
194 |
207 |
200 |
197 |
198 |
196 |
195 |
202 |
193 |
|
192 |
183 |
190 |
189 |
187 |
188 |
185 |
178 |
191 |
184 |
181 |
182 |
180 |
179 |
186 |
177 |
|
128 |
119 |
126 |
125 |
123 |
124 |
121 |
114 |
127 |
120 |
117 |
118 |
116 |
115 |
122 |
113 |
|
16 |
7 |
14 |
13 |
11 |
12 |
9 |
2 |
15 |
8 |
5 |
6 |
4 |
3 |
10 |
1 |
|
|
B, s4 = 34
16 |
9 |
5 |
4 |
3 |
6 |
10 |
15 |
2 |
7 |
11 |
14 |
13 |
12 |
8 |
1 |
|
With 384 possible squares for B and n4 for Cj
(j = 1 ... 16), the resulting number of 16th order Associated Squares of Subtraction with Res16 = 32 will be
384 * n416 with n4 = 8 * 8 (ref. Attachment 4.1).
2 Construction of Magic Squares of Subtraction (16 x 16)
Res16 = 32, Main - and Broken Diagonals sum to s16 = 2056
With square B Pan Magic and
square A Pan Magic,
the resulting square C will be a Magic Square of Subtraction with Pan Magic Diagonals,
as illustrated below:
A, Res4 = 8
12 |
8 |
2 |
14 |
3 |
15 |
9 |
5 |
16 |
4 |
6 |
10 |
7 |
11 |
13 |
1 |
|
C, Res16 = 32, s16 = 2056
188 |
184 |
178 |
190 |
179 |
191 |
185 |
181 |
192 |
180 |
182 |
186 |
183 |
187 |
189 |
177 |
|
204 |
200 |
194 |
206 |
195 |
207 |
201 |
197 |
208 |
196 |
198 |
202 |
199 |
203 |
205 |
193 |
|
44 |
40 |
34 |
46 |
35 |
47 |
41 |
37 |
48 |
36 |
38 |
42 |
39 |
43 |
45 |
33 |
|
92 |
88 |
82 |
94 |
83 |
95 |
89 |
85 |
96 |
84 |
86 |
90 |
87 |
91 |
93 |
81 |
|
108 |
104 |
98 |
110 |
99 |
111 |
105 |
101 |
112 |
100 |
102 |
106 |
103 |
107 |
109 |
97 |
|
28 |
24 |
18 |
30 |
19 |
31 |
25 |
21 |
32 |
20 |
22 |
26 |
23 |
27 |
29 |
17 |
|
252 |
248 |
242 |
254 |
243 |
255 |
249 |
245 |
256 |
244 |
246 |
250 |
247 |
251 |
253 |
241 |
|
140 |
136 |
130 |
142 |
131 |
143 |
137 |
133 |
144 |
132 |
134 |
138 |
135 |
139 |
141 |
129 |
|
220 |
216 |
210 |
222 |
211 |
223 |
217 |
213 |
224 |
212 |
214 |
218 |
215 |
219 |
221 |
209 |
|
172 |
168 |
162 |
174 |
163 |
175 |
169 |
165 |
176 |
164 |
166 |
170 |
167 |
171 |
173 |
161 |
|
76 |
72 |
66 |
78 |
67 |
79 |
73 |
69 |
80 |
68 |
70 |
74 |
71 |
75 |
77 |
65 |
|
60 |
56 |
50 |
62 |
51 |
63 |
57 |
53 |
64 |
52 |
54 |
58 |
55 |
59 |
61 |
49 |
|
12 |
8 |
2 |
14 |
3 |
15 |
9 |
5 |
16 |
4 |
6 |
10 |
7 |
11 |
13 |
1 |
|
124 |
120 |
114 |
126 |
115 |
127 |
121 |
117 |
128 |
116 |
118 |
122 |
119 |
123 |
125 |
113 |
|
156 |
152 |
146 |
158 |
147 |
159 |
153 |
149 |
160 |
148 |
150 |
154 |
151 |
155 |
157 |
145 |
|
236 |
232 |
226 |
238 |
227 |
239 |
233 |
229 |
240 |
228 |
230 |
234 |
231 |
235 |
237 |
225 |
|
|
B, s4 = 34
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
With 384 possible squares for B and n4 for Cj
(j = 1 ... 16), the resulting number of 16th order Squares of Subtraction with Res16 = 32 will be
384 * n416 with n4 = 8 * 24 (ref. Attachment 4.2).
|