Office Applications and Entertainment, Magic Squares of Subtraction | ||
Index | About the Author |
A, Res4 = 8
1 6 13 2 10 5 14 9 7 12 11 16 8 3 4 15 C, Res12 = 24
49 54 61 50 58 53 62 57 55 60 59 64 56 51 52 63
129 134 141 130 138 133 142 137 135 140 139 144 136 131 132 143
17 22 29 18 26 21 30 25 23 28 27 32 24 19 20 31
33 38 45 34 42 37 46 41 39 44 43 48 40 35 36 47
65 70 77 66 74 69 78 73 71 76 75 80 72 67 68 79
97 102 109 98 106 101 110 105 103 108 107 112 104 99 100 111
113 118 125 114 122 117 126 121 119 124 123 128 120 115 116 127
1 6 13 2 10 5 14 9 7 12 11 16 8 3 4 15
81 86 93 82 90 85 94 89 87 92 91 96 88 83 84 95 B, s3 = 15
4 9 2 3 5 7 8 1 6
Notes
16.0 Squares of Subtraction (16 x 16)
Comparable with Section 12.0 above, order 16 Magic Squares of Subtraction with Res16 = 32 can be constructed based on 16 order 4 Magic Squares of Subtraction each with Res4 = 8. |
A, Res4 = 8
1 6 13 2 10 5 14 9 7 12 11 16 8 3 4 15 C, Res16 = 32
1 6 13 2 10 5 14 9 7 12 11 16 8 3 4 15
17 22 29 18 26 21 30 25 23 28 27 32 24 19 20 31
33 38 45 34 42 37 46 41 39 44 43 48 40 35 36 47
49 54 61 50 58 53 62 57 55 60 59 64 56 51 52 63
65 70 77 66 74 69 78 73 71 76 75 80 72 67 68 79
81 86 93 82 90 85 94 89 87 92 91 96 88 83 84 95
97 102 109 98 106 101 110 105 103 108 107 112 104 99 100 111
113 118 125 114 122 117 126 121 119 124 123 128 120 115 116 127
129 134 141 130 138 133 142 137 135 140 139 144 136 131 132 143
145 150 157 146 154 149 158 153 151 156 155 160 152 147 148 159
161 166 173 162 170 165 174 169 167 172 171 176 168 163 164 175
177 182 189 178 186 181 190 185 183 188 187 192 184 179 180 191
193 198 205 194 202 197 206 201 199 204 203 208 200 195 196 207
209 214 221 210 218 213 222 217 215 220 219 224 216 211 212 223
225 230 237 226 234 229 238 233 231 236 235 240 232 227 228 239
241 246 253 242 250 245 254 249 247 252 251 256 248 243 244 255 B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Notes
18.0 Squares of Subtraction (18 x 18)
Comparable with Section 12.0 above,
order 18 Magic Squares of Subtraction with Res18 = 45 can be constructed based on 9 order 6 Magic Squares of Subtraction each with Res6 = 15.
|
A, s6 = 111, Res6 = 15
1 19 9 25 28 29 4 26 15 31 2 33 24 8 34 11 18 16 30 12 20 21 5 23 35 32 6 13 22 3 17 14 27 10 36 7 C, s18 = 2925, Res18 = 45
109 127 117 133 136 137 112 134 123 139 110 141 132 116 142 119 126 124 138 120 128 129 113 131 143 140 114 121 130 111 125 122 135 118 144 115
289 307 297 313 316 317 292 314 303 319 290 321 312 296 322 299 306 304 318 300 308 309 293 311 323 320 294 301 310 291 305 302 315 298 324 295
37 55 45 61 64 65 40 62 51 67 38 69 60 44 70 47 54 52 66 48 56 57 41 59 71 68 42 49 58 39 53 50 63 46 72 43
73 91 81 97 100 101 76 98 87 103 74 105 96 80 106 83 90 88 102 84 92 93 77 95 107 104 78 85 94 75 89 86 99 82 108 79
145 163 153 169 172 173 148 170 159 175 146 177 168 152 178 155 162 160 174 156 164 165 149 167 179 176 150 157 166 147 161 158 171 154 180 151
217 235 225 241 244 245 220 242 231 247 218 249 240 224 250 227 234 232 246 228 236 237 221 239 251 248 222 229 238 219 233 230 243 226 252 223
253 271 261 277 280 281 256 278 267 283 254 285 276 260 286 263 270 268 282 264 272 273 257 275 287 284 258 265 274 255 269 266 279 262 288 259
1 19 9 25 28 29 4 26 15 31 2 33 24 8 34 11 18 16 30 12 20 21 5 23 35 32 6 13 22 3 17 14 27 10 36 7
181 199 189 205 208 209 184 206 195 211 182 213 204 188 214 191 198 196 210 192 200 201 185 203 215 212 186 193 202 183 197 194 207 190 216 187
B, s3 = 15
4 9 2 3 5 7 8 1 6
A, Res8 = 32, s1 = 260, s2 = 11180
2 21 46 57 52 39 32 11 25 14 53 34 43 64 7 20 60 47 24 3 10 29 38 49 35 56 15 28 17 6 61 42 23 4 59 48 37 50 9 30 16 27 36 55 62 41 18 5 45 58 1 22 31 12 51 40 54 33 26 13 8 19 44 63 B, s1 = 260, s2 = 11180
1 20 16 61 53 40 37 32 26 18 43 62 51 41 6 13 42 50 21 31 48 7 56 5 35 57 10 27 29 2 46 54 11 19 63 36 38 55 8 30 60 9 58 17 34 44 15 23 52 59 24 14 3 22 47 39 33 28 25 12 4 49 45 64
The resulting Additve Associated Bimagic Square of Subtraction C is shown in
Attachment 64.1.
Pan Magic Bimagic Squares of Subtraction
With A an Additive, Pan Magic and Bimagic Square of Subtraction and B an Additive, Pan Magic and Bimagic Square, the resulting Square of Subtraction C will be Additve, Pan Magic and Bimagic as well. |
A, Res8 = 32, s1 = 260, s2 = 11180
2 13 19 32 44 39 57 54 27 24 10 5 49 62 36 47 56 59 37 42 30 17 15 4 45 34 64 51 7 12 22 25 21 26 8 11 63 52 46 33 16 3 29 18 38 41 55 60 35 48 50 61 9 6 28 23 58 53 43 40 20 31 1 14 B, s1 = 260, s2 = 11180
2 11 57 52 30 23 37 48 60 49 3 10 40 45 31 22 46 39 21 32 50 59 9 4 24 29 47 38 12 1 51 58 35 42 28 17 63 54 8 13 25 20 34 43 5 16 62 55 15 6 56 61 19 26 44 33 53 64 14 7 41 36 18 27
The resulting Additve, Pan Magic and Bimagic Square of Subtraction C is shown in
Attachment 64.2.
|
Index | About the Author |