' Constructs Magic Squares of order 17
' Based on (Semi) Latin Squares of order 17
' Tested with Office 365 under Windows 10
Sub CnstrSqrs17a()
Dim b(2, 289), a(289), TagNr(2)
Sheets("Klad1").Select
y = MsgBox("Locked", vbCritical, "Routine CnstrSqrs17a")
End
n2 = 0: n9 = 0: k1 = 1: k2 = 1
s1 = 2465
t1 = Timer
' Latin Lines Sorted: L2 ... L8, R2 ... R8 (Base Case)
For j1 = 1 To 7
Cells(n9 + 1, 290).Select: Cells(n9 + 1, 290).Value = j1
For j2 = 1 To 14
If j2 = j1 Then GoTo 20
j10 = j1: j20 = 1: GoSub 100 'Read Sudoku Comparable Square 1
j10 = j2: j20 = 2: GoSub 100 'Read Sudoku Comparable Square 2
For j4 = 1 To 289
a(j4) = b(1, j4) + 17 * b(2, j4) + 1
Next j4
GoSub 300: If fl1 = 0 Then GoTo 20 'Check identical numbers
' n9 = n9 + 1: GoSub 740 'Print results (selected numbers)
n9 = n9 + 1: GoSub 750 'Print results (squares)
20 Next j2
Next j1
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
y = MsgBox(t10, 0, "Routine CnstrSqrs17a")
End
' Read Sudoku Comparable Squares (Line Format)
100 For i1 = 1 To 289
b(j20, i1) = Sheets("LatLns17").Cells(j10, i1).Value
Next i1
TagNr(j20) = Sheets("LatLns17").Cells(j10, 290).Value
Return
' Check identical numbers
300 fl1 = 1: n10 = 0
For i1 = 1 To 289
a2 = a(i1)
For i2 = (1 + i1) To 289
If a2 = a(i2) Then fl1 = 0: Return
''If a2 = a(i2) Then n10 = n10 + 1
Next i2
Next i1
Return
' Print results (selected numbers)
740 Cells(n9, 170).Select
For i1 = 1 To 289
Cells(n9, i1).Value = a(i1)
Next i1
Cells(n9, 170).Value = j1
Cells(n9, 171).Value = j2
'' Cells(n9, 172).Value = n10
Return
' Print results (squares)
750 n2 = n2 + 1
If n2 = 2 Then
n2 = 1: k1 = k1 + 18: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 18
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = n9
Cells(k1, k2 + 2).Value = TagNr(1) ''j1
Cells(k1, k2 + 6).Value = TagNr(2) ''j2
i3 = 0
For i1 = 1 To 17
For i2 = 1 To 17
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a(i3)
Next i2
Next i1
Return
End Sub