17.0 Latin Squares (17 x 17)
A Latin Square of order 17 is a 17 x 17 square filled with 17 different symbols, each occurring only once in each row and only once in each column.
17.1 Latin Diagonal Squares (17 x 17)
Latin Diagonal Squares
are Latin Squares for which the 17 different symbols occur also only once in each of the main diagonals.
17.2 Magic Squares, Natural Numbers
17.2.1 Pan Magic Squares
Pan Magic Square M of order 17 with the integers 1 ... 289 can be written as
M = A + 17 * B + 1
where the squares A and B contain only the integers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ... 16.
Consequently order 17 Pan Magic Squares
can be based on pairs of Orthogonal Latin Diagonal Squares (A, B).
The required Orthogonal Latin Diagonal Squares (A, B)
for Pan Magic Squares can be constructed as follows:
-
Fill the first row of square A and square B with the numbers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ... 16.
While starting with 0 there are 16! = 2,09228 1013 possible combinations for each square.
-
Complete square A and B by copying the first row into the following rows of the applicable square,
according to one of the following 91 schemes:
A/B |
L2 |
R2 |
L3 |
R3 |
L4 |
R4 |
L5 |
R5 |
L6 |
R6 |
L7 |
R7 |
L8 |
R8 |
L2 |
- |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
L3 |
y |
y |
- |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
L4 |
y |
y |
y |
y |
- |
y |
y |
y |
y |
y |
y |
y |
y |
y |
L5 |
y |
y |
y |
y |
y |
y |
- |
y |
y |
y |
y |
y |
y |
y |
L6 |
y |
y |
y |
y |
y |
y |
y |
y |
- |
y |
y |
y |
y |
y |
L7 |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
- |
y |
y |
y |
L8 |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
y |
- |
y |
Ln = shift n columns to the left (n = 2, 3, 4, 5, 6, 7, 8)
Rn = shift n columns to the right (n = 2, 3, 4, 5, 6, 7, 8)
Attachment 17.2.1 shows the 14 types Latin Diagonal Squares based on the construction method described above.
An example of such a pair (A, B) and the resulting Pan Magic Square
M is shown below:
A(L2)
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
B(R2)
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
4 |
5 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
2 |
3 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
0 |
1 |
M = A + 17 * B + 1
1 |
19 |
37 |
55 |
73 |
91 |
109 |
127 |
145 |
163 |
181 |
199 |
217 |
235 |
253 |
271 |
289 |
258 |
276 |
5 |
23 |
41 |
59 |
77 |
95 |
113 |
131 |
149 |
167 |
185 |
203 |
221 |
222 |
240 |
226 |
244 |
262 |
280 |
9 |
27 |
45 |
63 |
81 |
99 |
117 |
135 |
153 |
154 |
172 |
190 |
208 |
194 |
212 |
230 |
248 |
266 |
284 |
13 |
31 |
49 |
67 |
85 |
86 |
104 |
122 |
140 |
158 |
176 |
162 |
180 |
198 |
216 |
234 |
252 |
270 |
288 |
17 |
18 |
36 |
54 |
72 |
90 |
108 |
126 |
144 |
130 |
148 |
166 |
184 |
202 |
220 |
238 |
239 |
257 |
275 |
4 |
22 |
40 |
58 |
76 |
94 |
112 |
98 |
116 |
134 |
152 |
170 |
171 |
189 |
207 |
225 |
243 |
261 |
279 |
8 |
26 |
44 |
62 |
80 |
66 |
84 |
102 |
103 |
121 |
139 |
157 |
175 |
193 |
211 |
229 |
247 |
265 |
283 |
12 |
30 |
48 |
34 |
35 |
53 |
71 |
89 |
107 |
125 |
143 |
161 |
179 |
197 |
215 |
233 |
251 |
269 |
287 |
16 |
274 |
3 |
21 |
39 |
57 |
75 |
93 |
111 |
129 |
147 |
165 |
183 |
201 |
219 |
237 |
255 |
256 |
242 |
260 |
278 |
7 |
25 |
43 |
61 |
79 |
97 |
115 |
133 |
151 |
169 |
187 |
188 |
206 |
224 |
210 |
228 |
246 |
264 |
282 |
11 |
29 |
47 |
65 |
83 |
101 |
119 |
120 |
138 |
156 |
174 |
192 |
178 |
196 |
214 |
232 |
250 |
268 |
286 |
15 |
33 |
51 |
52 |
70 |
88 |
106 |
124 |
142 |
160 |
146 |
164 |
182 |
200 |
218 |
236 |
254 |
272 |
273 |
2 |
20 |
38 |
56 |
74 |
92 |
110 |
128 |
114 |
132 |
150 |
168 |
186 |
204 |
205 |
223 |
241 |
259 |
277 |
6 |
24 |
42 |
60 |
78 |
96 |
82 |
100 |
118 |
136 |
137 |
155 |
173 |
191 |
209 |
227 |
245 |
263 |
281 |
10 |
28 |
46 |
64 |
50 |
68 |
69 |
87 |
105 |
123 |
141 |
159 |
177 |
195 |
213 |
231 |
249 |
267 |
285 |
14 |
32 |
Each type Latin Diagonal Square described above, corresponds with 16! = 2,09228 1013
Latin Diagonal Squares.
The possible combinations of square A and B described above will result in
91 * (2,0922 1013)2 / 4 = 9,95911 1027 unique solutions.
Each unique Pan Magic Square results in a Class Cn and finally in
8 * 289 * 9,95911 1027 = 2,30255 1031
possible Pan Magic Squares of the 17th order.
Attachment 17.2.2 shows one Pan Magic Square
for each valid type combination (A, B) as defined above.
17.2.2 Ultra Magic Squaress
A numerical example of the construction of an
order 17 Ultra Magic Square M
based on pairs of Orthogonal Latin Diagonal Squares
(A, B),
for the untegers
{ai, i = 0 ... 16}
and
{bj, j = 0 ... 16}
is shown below:
A
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
11 |
10 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
13 |
12 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
15 |
14 |
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
16 |
0 |
B = T(A)
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
16 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
0 |
M = A + 17 * B + 1
289 |
35 |
84 |
117 |
150 |
183 |
216 |
249 |
10 |
26 |
59 |
92 |
125 |
158 |
191 |
224 |
257 |
3 |
19 |
68 |
86 |
135 |
168 |
201 |
234 |
267 |
283 |
44 |
77 |
110 |
143 |
176 |
209 |
242 |
260 |
276 |
37 |
70 |
119 |
137 |
186 |
219 |
252 |
13 |
29 |
62 |
95 |
128 |
161 |
194 |
227 |
245 |
6 |
22 |
55 |
88 |
121 |
170 |
188 |
237 |
270 |
286 |
47 |
80 |
113 |
146 |
179 |
212 |
230 |
263 |
279 |
40 |
73 |
106 |
139 |
172 |
221 |
239 |
16 |
32 |
65 |
98 |
131 |
164 |
197 |
215 |
248 |
9 |
25 |
58 |
91 |
124 |
157 |
190 |
223 |
272 |
273 |
50 |
83 |
116 |
149 |
182 |
200 |
233 |
266 |
282 |
43 |
76 |
109 |
142 |
175 |
208 |
241 |
2 |
34 |
52 |
101 |
134 |
167 |
185 |
218 |
251 |
12 |
28 |
61 |
94 |
127 |
160 |
193 |
226 |
259 |
275 |
36 |
85 |
103 |
152 |
154 |
203 |
236 |
269 |
285 |
46 |
79 |
112 |
145 |
178 |
211 |
244 |
5 |
21 |
54 |
87 |
136 |
138 |
187 |
205 |
254 |
15 |
31 |
64 |
97 |
130 |
163 |
196 |
229 |
262 |
278 |
39 |
72 |
105 |
123 |
156 |
189 |
238 |
256 |
288 |
49 |
82 |
115 |
148 |
181 |
214 |
247 |
8 |
24 |
57 |
90 |
108 |
141 |
174 |
207 |
240 |
17 |
18 |
67 |
100 |
133 |
166 |
199 |
232 |
265 |
281 |
42 |
75 |
93 |
126 |
159 |
192 |
225 |
258 |
274 |
51 |
69 |
118 |
151 |
184 |
217 |
250 |
11 |
27 |
60 |
78 |
111 |
144 |
177 |
210 |
243 |
4 |
20 |
53 |
102 |
120 |
169 |
202 |
235 |
268 |
284 |
45 |
63 |
96 |
129 |
162 |
195 |
228 |
261 |
277 |
38 |
71 |
104 |
153 |
171 |
220 |
253 |
14 |
30 |
48 |
81 |
114 |
147 |
180 |
213 |
246 |
7 |
23 |
56 |
89 |
122 |
155 |
204 |
222 |
271 |
287 |
33 |
66 |
99 |
132 |
165 |
198 |
231 |
264 |
280 |
41 |
74 |
107 |
140 |
173 |
206 |
255 |
1 |
The Latin Square B is the transposed square of A (rows and columns exchanged).
The Latin Diagonal Squares A can be determined based on the defining equations of the top and bottom row, as provided below for Latin Diagonal Squares type R2:
|