Vorige Pagina Volgende Pagina About the Author

' Constructs 13 x 13 Composed Magic Squares for Natural Numbers (Part 2)
' Overlapping Sub Squares Order 7 and 3

' Tested with Office 2007 under Windows 7

Sub Prime13d2()

    Dim a1(169), a(169), a7(49), a13(169), b1(169), b(169), c(169)
 
    y = MsgBox("Locked", vbCritical, "Routine Prime13d2")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1
    ShtNm2 = "Lines13b"

        Cntr3 = 85: Pr3 = 2 * Cntr3:
        s3 = 3 * Cntr3                                   'MC3
        s4 = 2 * Pr3                                     'MC4
        s7 = 7 * Cntr3                                   'MC7
        s13 = 13 * Cntr3                                 'MC13
    
    t1 = Timer

    For j101 = 2 To 81
    
'       Redefine Varaibles

        nVar1 = 169

        For i1 = 1 To nVar1
           a1(i1) = i1
        Next i1
        m1 = 1: m2 = nVar1
        pMax = a1(m2)
 
        Erase b1
        For i1 = m1 To m2: b1(a1(i1)) = a1(i1): Next i1
        
'       Read Partial Completed Square 13 x 13
        
        For i1 = 1 To 169
            a(i1) = Sheets(ShtNm2).Cells(j101, i1).Value
        Next i1
        n10 = 0: n53 = 169: GoSub 910      'Remove used pairs from b1()
        
        Erase a13

        For i1 = 1 To 169
            a13(i1) = a(i1)
        Next i1

        Erase a

'       Restore available pairs in a1()

        n10 = 0
        For j1 = 1 To pMax
            If b1(j1) <> 0 Then
                n10 = n10 + 1
                a1(n10) = b1(j1)
            End If
        Next j1
        m1 = 1: m2 = n10: n10 = 0

'   Generate Associated Magic Squares 4 x 4

b(Cntr3) = Cntr3                                'Block Center Square

n10 = 0
For j16 = m1 To m2                                          'a(16)
If b1(a1(j16)) = 0 Then GoTo 2160
If b(a1(j16)) = 0 Then b(a1(j16)) = a1(j16): c(16) = a1(j16) Else GoTo 2160
a(16) = a1(j16)

For j15 = m1 To m2                                          'a(15)
If b1(a1(j15)) = 0 Then GoTo 2150
If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 2150
a(15) = a1(j15)

For j14 = m1 To m2                                          'a(14)
If b1(a1(j14)) = 0 Then GoTo 2140
If b(a1(j14)) = 0 Then b(a1(j14)) = a1(j14): c(14) = a1(j14) Else GoTo 2140
a(14) = a1(j14)

a(13) = s4 - a(14) - a(15) - a(16)
If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 2130
If b1(a(13)) = 0 Then GoTo 2130
If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 2130

For j12 = m1 To m2                                          'a(12)
If b1(a1(j12)) = 0 Then GoTo 2120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 2120
a(12) = a1(j12)

a(11) = s4 - a(12) - a(15) - a(16)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 2070
If b1(a(11)) = 0 Then GoTo 2070

a(10) = s4 - a(12) - a(14) - a(16)
If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 2070
If b1(a(10)) = 0 Then GoTo 2070

a(9) = s4 - a(10) - a(11) - a(12)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 2070
If b1(a(9)) = 0 Then GoTo 2070

a(8) = Pr3 - a(9): a(7) = Pr3 - a(10): a(6) = Pr3 - a(11): a(5) = Pr3 - a(12):
a(4) = Pr3 - a(13): a(3) = Pr3 - a(14): a(2) = Pr3 - a(15): a(1) = Pr3 - a(16):

            n43 = 16: GoSub 820
            If fl1 = 0 Then GoTo 2070

            n10 = n10 + 1
            Select Case n10
            
            Case 1

                a13(118) = a(1):  a13(119) = a(2):  a13(120) = a(3):  a13(121) = a(4):
                a13(131) = a(5):  a13(132) = a(6):  a13(133) = a(7):  a13(134) = a(8):
                a13(144) = a(9):  a13(145) = a(10): a13(146) = a(11): a13(147) = a(12):
                a13(157) = a(13): a13(158) = a(14): a13(159) = a(15): a13(160) = a(16):
                
                n53 = 16: GoSub 910                    'Remove used pairs from b1()
                Erase b, c: GoTo 2160                  'Find Square 2
            
            Case 2
            
                a13(10) = a(1):  a13(11) = a(2):  a13(12) = a(3):  a13(13) = a(4):
                a13(23) = a(5):  a13(24) = a(6):  a13(25) = a(7):  a13(26) = a(8):
                a13(36) = a(9):  a13(37) = a(10): a13(38) = a(11): a13(39) = a(12):
                a13(49) = a(13): a13(50) = a(14): a13(51) = a(15): a13(52) = a(16):
            
                n53 = 16: GoSub 910                    'Remove used pairs from b1()
                Erase b, c: GoTo 200                   'Continue
            
            End Select
    
2070 b(c(12)) = 0: c(12) = 0
2120 Next j12

     b(c(13)) = 0: c(13) = 0
2130 b(c(14)) = 0: c(14) = 0
2140 Next j14
     b(c(15)) = 0: c(15) = 0
2150 Next j15
     b(c(16)) = 0: c(16) = 0
2160 Next j16

GoTo 1000                                              'Not Found

200                                                    'Continue

'   Generate Magic Corner Square 3 x 3

n10 = 0
For j9 = m1 To m2                                                     'a(9)
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 260
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 220
a(8) = a1(j8)

    a(7) = s3 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 210:
    If b1(a(7)) = 0 Then GoTo 210
    
    a(6) = 4 * s3 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 210:
    If b1(a(6)) = 0 Then GoTo 210
    
    a(5) = s3 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 210:
    If b1(a(5)) = 0 Then GoTo 210
    
    a(4) = -2 * s3 / 3 + 1 * a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 210:
    If b1(a(4)) = 0 Then GoTo 210
    
    a(3) = -s3 / 3 + 1 * a(8) + 1 * a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 210:
    If b1(a(3)) = 0 Then GoTo 210
    
    a(2) = 2 * s3 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 210:
    If b1(a(2)) = 0 Then GoTo 210
    
    a(1) = 2 * s3 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 210:
    If b1(a(1)) = 0 Then GoTo 210

'           Exclude solutions with identical numbers a()

            n43 = 9: GoSub 820: If fl1 = 0 Then GoTo 210

            n10 = n10 + 1
            Select Case n10
            
            Case 1

                a13(83) = a(6):  a13(84) = a(4):  a13(85) = a(5):
                a13(96) = a(9):  a13(97) = a(7):  a13(98) = a(8):
                a13(109) = a(3): a13(110) = a(1): a13(111) = a(2):
                
                n53 = 9: GoSub 910                    'Remove used pairs from b1()
                b1(Cntr3) = Cntr3                     'Restore Center Element
                Erase b, c: GoTo 260                  'Find Square 2
            
            Case 2
 
                a13(59) = a(2): a13(60) = a(1): a13(61) = a(3):
                a13(72) = a(8): a13(73) = a(7): a13(74) = a(9):
                a13(85) = a(5): a13(86) = a(4): a13(87) = a(6):
            
                n53 = 9: GoSub 910                    'Remove used pairs from b1()
                Erase b, c: GoTo 3000                 'Continue
            
            End Select
            
210 b(c(8)) = 0: c(8) = 0
220 Next j8
    
    b(c(9)) = 0: c(9) = 0
260 Next j9

GoTo 1000                                             'Not Found

3000                                                  'Continue

'   Generate Associated Magic Rectangles 3 x 4

n10 = 0

Erase a: a(25) = a13(121)

For j24 = m1 To m2                                          'a(24)
If b1(a1(j24)) = 0 Then GoTo 3240
If b(a1(j24)) = 0 Then b(a1(j24)) = a1(j24): c(24) = a1(j24) Else GoTo 3240
a(24) = a1(j24)

a(13) = Pr3 - a(24): If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 3130

For j23 = m1 To m2                                          'a(23)
If b1(a1(j23)) = 0 Then GoTo 3230
If b(a1(j23)) = 0 Then b(a1(j23)) = a1(j23): c(23) = a1(j23) Else GoTo 3230
a(23) = a1(j23)

a(22) = 3 * s7 / 7 - a(23) - a(24)
If a(22) < a1(m1) Or a(22) > a1(m2) Then GoTo 3220
If b1(a(22)) = 0 Then GoTo 3220
If b(a(22)) = 0 Then b(a(22)) = a(22): c(22) = a(22) Else GoTo 3220

a(15) = Pr3 - a(22): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 3150
a(14) = Pr3 - a(23): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 3140

For j21 = m1 To m2                                          'a(21)
If b1(a1(j21)) = 0 Then GoTo 3210
If b(a1(j21)) = 0 Then b(a1(j21)) = a1(j21): c(21) = a1(j21) Else GoTo 3210
a(21) = a1(j21)

a(20) = 6 * s7 / 7 - 2 * a(21) - a(23) - 2 * a(24)
If a(20) < a1(m1) Or a(20) > a1(m2) Then GoTo 3200
If b1(a(20)) = 0 Then GoTo 3200
If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 3200

a(19) = -3 * s7 / 7 + a(21) + a(23) + 2 * a(24)
If a(19) < a1(m1) Or a(19) > a1(m2) Then GoTo 3190
If b1(a(19)) = 0 Then GoTo 3190
If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 3190

a(18) = Pr3 - a(19): If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 3180
a(17) = Pr3 - a(20): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 3170
a(16) = Pr3 - a(21): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 3160

For j12 = m1 To m2                                          'a(12)
If b1(a1(j12)) = 0 Then GoTo 3120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 3120
a(12) = a1(j12)

a(1) = Pr3 - a(12): If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 3010

For j11 = m1 To m2                                          'a(11)
If b1(a1(j11)) = 0 Then GoTo 3110
If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 3110
a(11) = a1(j11)

a(10) = 4 * s7 / 7 + 2 * a(11) - a(12) - 3 * a(21) - a(23) - a(24) + a(25)
If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 3100
If b1(a(10)) = 0 Then GoTo 3100
If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 3100

a(9) = -3 * a(11) + 3 * a(21) + a(23) + a(24) - a(25)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 3090
If b1(a(9)) = 0 Then GoTo 3090
If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 3090

a(8) = s7 / 7 - 3 * a(11) - a(12) + 3 * a(21) + a(23) + a(24) - a(25)
If a(8) < a1(m1) Or a(8) > a1(m2) Then GoTo 3080
If b1(a(8)) = 0 Then GoTo 3080
If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 3080

a(7) = 5 * s7 / 7 + a(11) - a(12) - 3 * a(21) - a(23) - a(24) + a(25)
If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 3070
If b1(a(7)) = 0 Then GoTo 3070
If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 3070

a(6) = Pr3 - a(7): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 3060
a(5) = Pr3 - a(8): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 3050
a(4) = Pr3 - a(9): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 3040
a(3) = Pr3 - a(10): If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 3030
a(2) = Pr3 - a(11): If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 3020


            n10 = n10 + 1
            Select Case n10
            
            Case 1

                a13(79) = a(1):  a13(80) = a(2):   a13(81) = a(3):   a13(82) = a(4):
                a13(92) = a(5):  a13(93) = a(6):   a13(94) = a(7):   a13(95) = a(8):
                a13(105) = a(9): a13(106) = a(10): a13(107) = a(11): a13(108) = a(12):
                
                a13(122) = a(13): a13(123) = a(14): a13(124) = a(15):
                a13(135) = a(16): a13(136) = a(17): a13(137) = a(18):
                a13(148) = a(19): a13(149) = a(20): a13(150) = a(21):
                a13(161) = a(22): a13(162) = a(23): a13(163) = a(24):
                
                n53 = 25: GoSub 910                    'Remove used pairs from b1()

                a(25) = a13(49)
                Erase b, c: GoTo 3240                  'Find Square 2
            
            Case 2
            
                a13(7) = a(24): a13(8) = a(23): a13(9) = a(22):
                a13(20) = a(21): a13(21) = a(20): a13(22) = a(19):
                a13(33) = a(18): a13(34) = a(17): a13(35) = a(16):
                a13(46) = a(15): a13(47) = a(14): a13(48) = a(13):
                
                a13(62) = a(12): a13(63) = a(11): a13(64) = a(10): a13(65) = a(9):
                a13(75) = a(8): a13(76) = a(7): a13(77) = a(6): a13(78) = a(5):
                a13(88) = a(4): a13(89) = a(3): a13(90) = a(2): a13(91) = a(1):
           
                GoSub 800                              'Double Check Identical Integers a13()
                If fl1 = 1 Then
                    n9 = n9 + 1: GoSub 650             'Print Composed Squares a13()
                End If
                Erase b1, b, c: GoTo 1000              'Print only first square
            
            End Select

     b(c(2)) = 0: c(2) = 0
3020 b(c(3)) = 0: c(3) = 0
3030 b(c(4)) = 0: c(4) = 0
3040 b(c(5)) = 0: c(5) = 0
3050 b(c(6)) = 0: c(6) = 0
3060 b(c(7)) = 0: c(7) = 0
3070 b(c(8)) = 0: c(8) = 0
3080 b(c(9)) = 0: c(9) = 0
3090 b(c(10)) = 0: c(10) = 0
3100 b(c(11)) = 0: c(11) = 0
3110 Next j11

     b(c(1)) = 0: c(1) = 0
3010 b(c(12)) = 0: c(12) = 0
3120 Next j12

     b(c(16)) = 0: c(16) = 0
3160 b(c(17)) = 0: c(17) = 0
3170 b(c(18)) = 0: c(18) = 0
3180 b(c(19)) = 0: c(19) = 0
3190 b(c(20)) = 0: c(20) = 0
3200 b(c(21)) = 0: c(21) = 0
3210 Next j21

     b(c(14)) = 0: c(14) = 0
3140 b(c(15)) = 0: c(15) = 0
3150 b(c(22)) = 0: c(22) = 0
3220 b(c(23)) = 0: c(23) = 0
3230 Next j23

     b(c(13)) = 0: c(13) = 0
3130 b(c(24)) = 0: c(24) = 0
3240 Next j24

1000 Erase b1, b, c
     Next j101

    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine Prime13d2")

End

'   Print results (squares)

650  n5 = n5 + 1
     If n5 = 2 Then
         n5 = 1: k1 = k1 + 14: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 14
     End If
     
     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = j101

     i3 = 0
     For i1 = 1 To 13
         For i2 = 1 To 13
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a13(i3)
         Next i2
     Next i1
    
     Return

'   Double Check Identical Numbers a13()

800 fl1 = 1
    For i1 = 1 To 169
       a20 = a13(i1): If a20 = 0 Then GoTo 810
       For i2 = (1 + i1) To 169
           If a20 = a13(i2) Then fl1 = 0: Return
       Next i2
810 Next i1
    Return
   
'   Double Check Identical Numbers a()

820 fl1 = 1
    For i1 = 1 To n43
    a20 = a(i1): If a20 = 0 Then GoTo 825
       For i2 = (1 + i1) To n43
           If a20 = a(i2) Then fl1 = 0: Return
       Next i2
825 Next i1
    Return
   
'   Remove used integers a() from available integers b1()

910 For i1 = 1 To n53
         b1(a(i1)) = 0
    Next i1
    Return

End Sub

Vorige Pagina Volgende Pagina About the Author