Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
7.0 Special Cubes, Prime Numbers
Prime Number Magic Cubes can be generated with comparable routines as develloped for Prime Number Magic Squares.
7.1 Magic Cubes (3 x 3 x 3)
The equations defining a Simple Magic Cube of the third order are: a(25) = s1 - a(26) - a(27) a(22) = s1 - a(23) - a(24) a(21) = s1 - a(24) - a(27) a(20) = s1 - a(23) - a(26) a(19) = - s1 + a(23) + a(24) + a(26) + a(27) a(18) = -2*s1/3 + a(23) + a(24) + a(26) a(17) = 4*s1/3 - a(23) - 2 * a(26) a(16) = s1/3 - a(24) + a(26) a(15) = 4*s1/3 - a(23) - 2 * a(24) a(14) = s1/3 a(13) = -2*s1/3 + a(23) + 2 * a(24) a(12) = s1/3 + a(24) - a(26) a(11) = -2*s1/3 + a(23) + 2 * a(26) a(10) = 4*s1/3 - a(23) - a(24) - a(26) a( 9) = 5*s1/3 - a(23) - a(24) - a(26) - a(27) a( 8) = - s1/3 + a(23) + a(26) a( 7) = - s1/3 + a(24) + a(27) a( 6) = - s1/3 + a(23) + a(24) a( 5) = 2*s1/3 - a(23) a( 4) = 2*s1/3 - a(24) a( 3) = - s1/3 + a(26) + a(27) a( 2) = 2*s1/3 - a(26) a( 1) = 2*s1/3 - a(27)
with a(23), a(24), a(26) and a(27) the independent variables. The variable Magic Sum s1 should be divisible by 3.
7.2 Magic Cubes (4 x 4 x 4)
The equations defining a fourth order Simple Magic Cube with horizontal Pan Magic Planes are: a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = a(60) - a(62) + a(64) a(57) = - a(60) + a(62) + a(63) a(46) = s1 - a(47) - a(62) - a(63) a(45) = - a(48) + a(62) + a(63) a(44) = s1 - a(47) - a(60) - a(63) a(43) = - a(48) + a(60) + a(63) a(42) = a(48) - a(60) + a(62) a(41) = a(47) + a(60) - a(62) a(29) = s1 - a(30) - a(31) - a(32) a(28) = s1 - a(31) - 2 * a(32) + a(43) - a(48) a(27) = a(32) + 2 * a(48) - a(60) - a(63) a(26) = a(29) - 2 * a(48) + a(60) + a(63) a(25) = s1 - a(26) - a(27) - a(28) a(16) = s1 - a(32) - a(48) - a(64) a(15) = s1 - a(31) - a(47) - a(63) a(14) = - a(30) + a(47) + a(63) a(13) = s1 - a(14) - a(15) - a(16) a(12) = s1 - a(28) - a(44) - a(60) a(11) = s1 - a(27) - a(43) - a(59) a(10) = s1 - a(26) - a(42) - a(58) a(9) = s1 - a(10) - a(11) - a(12)
with a(30) ... a(32), a(47), a(48), a(60) and a(62) ... a(64) the independent variables.
7.2.2 Simple Magic Cubes, Horizontal Associated Magic Planes
The equations defining a fourth order Simple Magic Cube with horizontal Associated Magic Planes are: a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = s1 - a(60) - a(62) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(45) = s1 - a(46) - a(47) - a(48) a(43) = s1 - a(44) - a(47) - a(48) a(42) = s1 - a(44) - a(46) - a(48) a(41) = s1 - a(42) - a(43) - a(44) a(31) = s1 - a(32) - a(46) - a(48) + a(61) - a(64) a(29) = s1 - a(30) - a(31) - a(32) a(28) = - a(32) + a(44) - a(45) + a(62) + a(63) a(27) = a(32) - a(44) - a(47) + 2 * a(64) a(26) = s1 - a(28) - a(30) - a(32) a(25) = s1 - a(26) - a(27) - a(28) a(16) = s1 - a(32) - a(48) - a(64) a(15) = s1 - a(31) - a(47) - a(63) a(14) = s1 - a(30) - a(46) - a(62) a(13) = a(30) + a(47) - a(64) a(12) = s1 - a(28) - a(44) - a(60) a(11) = s1 - a(27) - a(43) - a(59) a(10) = s1 - a(26) - a(42) - a(58) a(9) = s1 - a(25) - a(41) - a(57)
with
a(30),
a(32),
a(44),
a(46) ... a(48),
a(60),
a(62) ... a(64)
the independent variables.
7.2.3 Simple Magic Cubes, Associated
The equations defining a fourth order Simple Associated Magic Cube are: a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) =-2*s1 + a(54) + a(55) + a(56) + a(58) + a(59) + a(60) + a(62) + a(63) + a(64) a(45) = s1 - a(46) - a(47) - a(48) a(42) = 2*s1 - a(43) - a(46) - a(47) - a(58) - a(59) - a(62) - a(63) a(41) = - s1 - a(44) + a(46) + a(47) + a(58) + a(59) + a(62) + a(63) a(40) = - a(44) + a(46) + a(47) - a(56) - a(60) + a(62) + a(63) a(39) = 2*s1 - a(43) - a(46) - a(47) - a(55) - a(59) - a(62) - a(63) a(38) = a(43) - a(54) + a(59) a(37) = - s1 + a(44) + a(54) + a(55) + a(56) + a(60) a(36) = s1 - a(46) - a(47) - a(48) + a(56) + a(60) - a(62) - a(63) a(35) = - s1 + a(46) + a(55) + a(59) + a(62) + a(63) a(34) = - s1 + a(47) + a(54) + a(58) + a(62) + a(63) a(33) = 2*s1 + a(48) - a(54) - a(55) - a(56) - a(58) - a(59) - a(60) - a(62) - a(63)
with
a(43),
a(44),
a(46) ... a(48),
a(54) ... a(56),
a(58) ... a(60),
a(62) ... a(64)
the independent variables.
7.2.4 Simple Magic Cubes, Associated and 3D-Compact
The equations defining a fourth order Simple Magic Cube as specified above are: a(61) = s1 - a(62) - a(63) - a(64) a(58) = s1 - a(59) - a(62) - a(63) a(57) = - a(60) + a(62) + a(63) a(55) = s1 - a(56) - a(59) - a(60) a(53) = - a(54) + a(59) + a(60) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(56) + a(60) - a(63) a(50) = - a(54) + a(59) + a(63) a(49) = a(54) - a(59) + a(64) a(46) = s1 - a(47) - a(62) - a(63) a(45) = - a(48) + a(62) + a(63) a(43) = 2*s1 - a(44) - a(47) - a(48) - a(59) - a(60) - a(63) - a(64) a(42) = - a(43) + a(62) + a(63) a(41) = s1 - a(44) - a(62) - a(63) a(40) = s1 - a(44) - a(56) - a(60) a(39) = - a(43) + a(56) + a(60) a(38) = - a(39) - a(54) + a(56) + a(59) + a(60) a(37) = a(44) + a(54) - a(59) a(36) = - a(48) + a(56) + a(60) a(35) = s1 - a(47) - a(56) - a(60) a(34) = a(47) + a(54) - a(59) a(33) = a(48) - a(54) + a(59)
with
a(44),
a(47), a(48),
a(54), a(56),
a(59), a(60),
a(62) ... a(64)
the independent variables.
7.2.5 Simple Magic Cubes, Associated with Horizontal Magic Planes
The equations defining a fourth order Simple Magic Cube as specified above are: a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(55) = a(56) - a(58) + a(60) - a(61) + a(64) a(54) = s1 - a(55) - a(58) - a(59) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) = s1 - a(50) - a(51) - a(52) a(46) = s1 - a(47) - a(62) - a(63) a(45) = s1 - a(46) - a(47) - a(48) a(43) = s1 - a(48) - a(59) - a(64) a(42) = a(48) - a(58) + a(64) a(41) = s1 - a(42) - a(43) - a(44) a(40) = s1 - a(44) - a(56) - a(60) a(39) = a(48) - a(56) + a(58) - a(60) + a(61) a(38) = - a(39) + a(58) + a(59) a(37) = s1 - a(38) - a(39) - a(40) a(36) = s1 - a(39) - a(42) - a(45) a(35) = s1 - a(39) - a(43) - a(47) a(34) = s1 - a(38) - a(42) - a(46) a(33) = s1 - a(34) - a(35) - a(36)
with a(44), a(47), a(48), a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
7.2.6 Pantriagonal Magic Cubes, Complete
The equations defining a fourth order Pantriagonal and Complete Magic Cube are: a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) = s1 - a(53) - a(57) - a(61) a(45) = s1 - a(46) - a(47) - a(48) a(42) = 2*s1 - a(44) - a(46) - a(48) - a(58) - a(60) - a(62) - a(64) a(41) = s1 - a(42) - a(43) - a(44) a(40) = a(46) - a(56) + a(62) a(39) = a(45) - a(55) + a(61) a(38) = a(48) - a(54) + a(64) a(37) = a(47) - a(53) + a(63) a(36) = s1 - a(44) - a(46) - a(48) + a(56) - a(62) a(35) = - a(43) + a(46) + a(48) + a(55) - a(61) a(34) = - s1 + a(44) + a(54) + a(58) + a(60) + a(62) a(33) = a(43) + a(53) - a(58) - a(60) + a(61)
with a(43), a(44), a(46) ... a(48), a(54) ... a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
The variable values {ai} on which the defined fourth order Prime Number Magic Cube might be based should contain 32 pairs.
7.2.7 Pantriagonal Magic Cubes, Complete with Horizontal Magic Planes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Pantriagonal and Complete Magic Cubes with Horizontal Magic Planes:
a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(55) = a(56) - a(58) + a(60) - a(61) + a(64) a(54) = s1 - a(55) - a(58) - a(59) a(53) = - a(56) + a(58) + a(59) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(54) + a(58) - a(63) a(50) = s1 - a(51) - a(62) - a(63) a(49) = a(56) + a(60) - a(61) a(45) = s1 - a(46) - a(47) - a(48) a(44) = a(45) - a(46) - a(48) - a(60) + 2 * a(61) + a(63) a(43) = s1 - a(48) - a(59) - a(64) a(42) = s1 - a(45) - a(58) - a(61) a(41) = a(42) - a(43) - a(47) + 2 * a(58) + a(60) - a(63) a(40) = a(46) - a(56) + a(62) a(39) = a(45) - a(56) + a(58) - a(60) + 2 * a(61) - a(64) a(38) = a(48) - a(54) + a(64) a(37) = a(47) + a(56) - a(58) - a(59) + a(63) a(36) = s1 - a(45) - a(54) - a(59) a(35) = - a(39) - a(47) + a(48) + a(59) + a(64) a(34) = s1 - a(35) - a(46) - a(47) a(33) = - a(36) + a(46) + a(47)
with a(46) ... a(48), a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
The variable values {ai} on which the defined fourth order Prime Number Magic Cube might be based should contain 32 pairs.
7.2.8 Simple Magic Cubes, Plane Symmetrical with Horizontal Magic Planes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations
describing Plane Symmetrical Magic Cubes with Horizontal Magic Planes:
a(62) = s1 - a(61) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(56) = s1 - a(52) - a(60) - a(64) a(55) = s1 - a(54) - a(58) - a(59) a(53) = s1 - a(49) - a(57) - a(61) a(52) = s1 - a(55) - a(58) - a(61) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(49) - a(51) - a(52) a(49) = s1 - a(54) - a(59) - a(64) a(45) = s1 - a(46) - a(47) - a(48) a(42) = - a(43) + a(62) + a(63) a(41) = s1 - a(44) - a(62) - a(63) a(40) = s1 - a(41) - 2 * a(43) - 2 * a(44) + a(45) - a(48) + a(56) + a(60) a(39) = - a(43) + a(56) + a(60) a(38) = s1 - a(39) - a(62) - a(63) a(37) = - a(40) + a(62) + a(63) a(36) = s1 + a(37) - a(44) - a(48) - a(62) - a(63) a(35) = s1 - a(47) - a(56) - a(60) a(34) = - a(46) + a(56) + a(60) a(33) = - 2 * a(43) - a(48) + a(56) + a(60) + a(62) + a(63)
with
a(43), a(44), a(46), a(47), a(48), a(54), a(58) ... a(61), a(63) and a(64)
the independent variables.
The variable values {ai} on which the defined fourth order Prime Number Magic Cube might be based should contain 32 pairs.
7.2.9 Almost Perfect Magic Cubes, Plane Symmetrical
Magic Cubes - as discussed in previous sections are (normally) referred to as Simple Magic Cubes,
as not all diagonals sum to the Magic Constant.
a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(56) = s1/2 + a(58) - a(63) - a(64) a(55) = -s1/2 + a(60) + a(62) + a(64) a(54) = s1 - a(55) - a(58) - a(59) a(53) = -s1/2 + a(59) + a(63) + a(64) a(52) = s1/2 - a(58) - a(60) + a(63) a(51) = 3*s1/2 - a(59) - a(60) - a(62) - a(63) - a(64) a(50) = -s1/2 + a(59) + a(60) + a(64) a(49) = -s1/2 + a(58) + a(60) + a(62) a(46) = a(47) - a(61) + a(64) a(45) = s1 - a(46) - a(47) - a(48) a(44) = s1 - a(47) - a(48) - 0.5 * a(58) + 0.5 * a(59) - 0.5 * a(62) + 0.5 * a(63) - a(64) a(43) = s1 - 0.5 * a(58) - 0.5 * a(59) - a(60) - 0.5 * a(62) - 0.5 * a(63) a(42) = s1 - a(43) - a(62) - a(63) a(41) = - a(44) + a(62) + a(63) a(40) = s1/2 + a(42) - a(47) - a(48) a(39) = -s1/2 - 0.5 * a(58) + 0.5 * a(59) + 0.5 * a(62) + 1.5 * a(63) + a(64) a(38) = - a(39) + a(62) + a(63) a(37) = s1 - a(40) - a(62) - a(63) a(36) = s1 - a(40) - a(44) - a(48) a(35) = s1 - a(39) - a(43) - a(47) a(34) = s1 - a(35) - 2 * a(47) + a(61) - a(64) a(33) = s1 - a(48) - a(51) - a(62)
with a(47), a(48), a(58) ... a(60), a(62) ... a(64) the independent variables.
The variable values {ai} on which the defined fourth order Prime Number Magic Cube might be based should contain 32 pairs.
The obtained results regarding the miscellaneous Prime Number Magic Cubes as deducted and discussed in previous sections are summarized in following table: |
Order
Main Characteristics
Subroutine
Results
3
Simple
4
Simple, Horizontal Pan Magic Planes
Simple, Horizontal Associated Planes
Simple, Associated
Simple, Associated and 3D-Compact
Simple, Associated, Horizontal Magic Planes
4
Pantriagonal, Complete
Pantriagonal, Complete, Horizontal Magic Planes
4
Plane Symm, Simple, Horizontal Magic Planes
Plane Symm, Almost Perfect
-
-
-
-
Comparable routines as listed above, can be used to generate Prime Number Magic Cubes of order 5, 6 and 7, which will be described in following sections.
|
Index | About the Author |