Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
7.0 Special Cubes, Prime Numbers
7.3 Bordered Magic Cubes (5 x 5 x 5)
A Bordered Magic Cube of order 5 consists of an Embedded Magic Cube of order 3 with a border around it.
7.3.2 Semi Magic Surface Planes
In spite of the above, Natalia Makarova's study 'Concentric Magic Cubes of Prime Numbers' contains a variety of Bordered Magic Cubes
with Semi Magic Surface Planes of order 5, 6, 7 and 8.
Rather than applying comparable equations as deducted in Section 4.3, Bordered Magic Cubes can be constructed based on
Complementary Anti Symmetric Magic Squares of order 5, as discussed in Section 14.3.10.
The relation between opposite surface squares (symmetry) can be represented as follows:
with Pr5 = 2 * s5 / 5 the pair sum for the corresponding Magic Sum s5.
the defining equations of the Back Square (Semi Magic) can be written as: a( 6) = s5 - a(11) - a(16) - a( 1) - a(21) a( 7) = s5 - a(12) - a(17) - a( 2) - a(22) a( 8) = s5 - a(13) - a(18) - a( 3) - a(23) a( 9) = s5 - a(14) - a(19) - a( 4) - a(24) a(10) = s5 - a(15) - a(20) - a( 5) - a(25) a(11) = s5 - a(12) - a(13) - a(14) - a(15) a(16) = s5 - a(17) - a(18) - a(19) - a(20)
with a(i) independent for i = 12 ... 15 and i = 17 ... 20;
the defining equations of the Left Square (Semi Magic) can be written as: a( 7) = s5 - a(12) - a(17) - a( 2) - a(22) a( 8) = s5 - a(13) - a(18) - a( 3) - a(23) a( 9) = s5 - a(14) - a(19) - a( 4) - a(24) a(12) = s5 - a(13) - a(14) - a(11) - a(15) a(17) = s5 - a(18) - a(19) - a(16) - a(20)
with a(i) independent for i = 13, 14, 18 and 19;
Attachment 7.3.3, page 1 shows - for miscellaneous Magic Sums and Center Cubes - the first occurring 5th order Prime Number Bordered Magic Cube with Magic Top and Bottom Planes;
7.3.4 Magic Top/Bottom and Back/Front Planes
For Magic Back and Front Squares, and based on the same substitution:
the defining equations of the Back Square can be written as: a( 6) = s5 - a( 7) - a( 8) - a( 9) - a(10) a( 7) = s5 - a(13) - a(19) - a( 1) - a(25) a( 8) = s5 - a(13) - a(18) - a( 3) - a(23) a( 9) = s5 - a(14) - a(19) - a( 4) - a(24) a(10) = s5 - a(15) - a(20) - a( 5) - a(25) a(11) = s5 - a( 6) - a(16) - a( 1) - a(21) a(12) = s5 - a( 7) - a(17) - a( 2) - a(22) a(13) = a(14) - a(17) + a(19) + a( 4) - a(5) - a(21) + a(24) a(16) = s5 - a(17) - a(18) - a(19) - a(20)
with a(i) independent for i = 14, 15 and i = 17 ... 20;
Attachment 7.3.4 shows, for miscellaneous Magic Sums, the first occurring 5th order Prime Number Bordered Magic Cubes with four Magic Surface Planes.
7.3.5 Magic Surface Planes (s-Magic)
The Anti Symmetric Magic Squares applied in Section 7.3.3 and 7.3.4 above can be considered as possible top squares for s-Magic Borders.
the defining equations of the Magic Back Square can be written as: a( 7) = s5 - a(13) - a(19) - a( 1) - a(25) a( 9) = s5 - a(17) - a(13) - a( 5) - a(21) a(14) = a(17) + a(13) - a(19) - a( 4) + a(5) + a(21) - a(24) a(12) = s5 - a(17) - a( 7) - a( 2) - a(22) a(16) = s5 - a(18) - a(20) - a(17) - a(19) a( 8) = s5 - a(18) - a(13) - a( 3) - a(23) a(11) = s5 - a(12) - a(14) - a(15) - a(13) a( 6) = s5 - a(11) - a(16) - a( 1) - a(21) a(10) = s5 - a(15) - a(20) - a( 5) - a(25)
with a(i) independent for i = 13, 15 and i = 17 ... 20;
the defining equations of the Left Magic Square can be written as: a( 7) = s5 - a(13) - a(19) - a( 1) - a(25) a( 8) = s5 - a(13) - a(18) - a( 3) - a(23) a( 9) = s5 - a(14) - a(19) - a( 4) - a(24) a(12) = s5 - a(13) - a(14) - a(11) - a(15) a(13) = a(14) - a(17) + a(19) + a(4) - a( 5) - a(21) + a(24) a(14) = (-3*a(18) -6*a(19) - a(11) - a(15)- 3*a(16) - 3*a(20) + a( 1) + + 3*a( 2) + 2*a( 3) +4*a( 5) + 4*a(21) + 3*a(22) + 2*a(23) + a(25))/3 a(17) = s5 - a(18) - a(19) - a(16) - a(20)
with a(i) independent for i = 18 and 19;
7.4 Bordered Magic Cubes (6 x 6 x 6)
Bordered Magic Cubes of order 6 - with Semi Magic Surface Planes - can be constructed based on the application of 3th order Semi Magic Sub Squares (6 magic lines).
7.4.2 Construction Method, Semi Magic Surface Planes
The construction method, based on this principle, can be summarized as follows:
The relation between opposite surface squares (symmetry) can be represented as follows:
with Pr3 = s6 / 3 the pair sum for the corresponding Magic Sum s6.
the defining equations of the Left Surface Square (Semi Magic) can be written as: a(26) = s6 - a(27) - a(28) - a(29) - a(25) - a(30) a(20) = s6 - a(21) - a(22) - a(23) - a(19) - a(24) a(14) = s6 - a(15) - a(16) - a(17) - a(13) - a(18) a(11) = s6 - a(17) - a(23) - a(29) - a(35) - a( 5) a(10) = s6 - a(16) - a(22) - a(28) - a(34) - a( 4) a( 9) = s6 - a(15) - a(21) - a(27) - a(33) - a( 3) a( 8) = s6 - a(14) - a(20) - a(26) - a(32) - a( 2)
with a(i) independent for i = 15, 16, 17; 21, 22, 23; 27, 28, 29;
which can be incorporated in a guessing routine to complete the borders within a reasonable time (PrimeCubes6b).
Each cube shown corresponds with numerous cubes for the same Magic Sum (n4 * 48 * 48).
7.4.3 Construction Method, Magic Top/Bottom Planes
Alternatively, for higher Magic Sums, the top squares might be based on sets of 3th order Anti Symmetric Semi Magic Squares with 7 magic lines (ref. Attachment 7.4.11).
7.4.4 Construction Method, Magic Surface Planes (s-Magic)
Based on the Anti Symmetric (Semi-) Magic Surface Planes as constructed in Section 7.4.3 above, numerous Anti Symmetric Magic Squares can be obtained by means of row and column permutations.
With c(i) the cube variables and the substitution: |
a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) a(16) a(17) a(18) a(19) a(20) a(21) a(22) a(23) a(24) a(25) a(26) a(27) a(28) a(29) a(30) a(31) a(32) a(33) a(34) a(35) a(36) =
c(1) c(2) c(3) c(4) c(5) c(6) c(37) c(38) c(39) c(40) c(41) c(42) c(73) c(74) c(75) c(76) c(77) c(78) c(109) c(110) c(111) c(112) c(113) c(114) c(145) c(146) c(147) c(148) c(149) c(150) c(181) c(182) c(183) c(184) c(185) c(186)
the defining equations of the Back Square (Magic) can be written as: a(8) = s6 - a(15) - a(22) - a(29) - a(1) - a(36) a(11) = s6 - a(17) - a(23) - a(29) - a(5) - a(35) a(16) = s6 - a(21) - a(26) - a(11) - a(6) - a(31) a(14) = s6 - a(20) - a(26) - a(8) - a(2) - a(32) a(10) = s6 - a(28) - a(16) - a(22) - a(4) - a(34) a(9) = s6 - a(27) - a(21) - a(15) - a(3) - a(33) a(25) = s6 - a(30) - a(27) - a(28) - a(26) - a(29) a(19) = s6 - a(24) - a(20) - a(21) - a(23) - a(22) a(13) = s6 - a(18) - a(14) - a(16) - a(17) - a(15) a(12) = s6 - a(30) - a(18) - a(24) - a(6) - a(36) a(7) = s6 - a(12) - a(9) - a(10) - a(11) - a(8)
with a(i) independent for i = 26 ... 30, 20 ... 24 and i = 15, 17, 18 |
a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) a(16) a(17) a(18) a(19) a(20) a(21) a(22) a(23) a(24) a(25) a(26) a(27) a(28) a(29) a(30) a(31) a(32) a(33) a(34) a(35) a(36) =
c(1) c(7) c(13) c(19) c(25) c(31) c(37) c(43) c(49) c(55) c(61) c(67) c(73) c(79) c(85) c(91) c(97) c(103) c(109) c(115) c(121) c(127) c(133) c(139) c(145) c(151) c(157) c(163) c(169) c(175) c(181) c(187) c(193) c(199) c(205) c(211)
the defining equations of the Left Square (Magic) can be written as: a(8) = s6 - a(1) - a(15) - a(22) - a(29) - a(36) a(16) = s6 - a(21) - a(15) - a(22) + - (a(1) + a(3) + a(4) + a(6) - a(7) - a(12) - a(25) - a(30) + a(31) + a(33) + a(34) + a(36))/2 a(11) = s6 - a(6) - a(16) - a(21) - a(26) - a(31) a(27) = s6 - a(25) - a(26) - a(28) - a(29) - a(30) a(10) = s6 - a(16) - a(22) - a(28) - a(4) - a(34) a(9) = s6 - a(15) - a(21) - a(27) - a(3) - a(33) a(20) = s6 - a(21) - a(22) - a(23) - a(19) - a(24) a(17) = s6 - a(11) - a(23) - a(29) - a(5) - a(35) a(14) = s6 - a(15) - a(16) - a(17) - a(13) - a(18)
with a(i) independent for i = 26, 28, 29, 21 ... 23 and i = 15
Based on the equations listed above, guessing routines can be written to generate Prime Number Bordered Magic Cubes of order 6 - with magic surface planes - within a reasonable time
(PrimeCubes61).
7.5 Bordered Magic Cubes (7 x 7 x 7)
Bordered Magic Cubes of order 7 - with (Semi-) Magic Surface Planes -
can be constructed based on Complementary Anti Symmetric (Semi-) Magic Squares.
7.5.2 Construction Method, Semi Magic Surface Planes
The construction method, based on this principle, can be summarized as follows:
The relation between opposite surface squares (symmetry) can be represented as follows: |
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40 c41 c42 c43 c44 c45 c46 c47 c48 c49
Pr7 - c49 Pr7 - c44 Pr7 - c45 Pr7 - c46 Pr7 - c47 Pr7 - c48 Pr7 - c43 Pr7 - c14 Pr7 - c9 Pr7 - c10 Pr7 - c11 Pr7 - c12 Pr7 - c13 Pr7 - c8 Pr7 - c21 Pr7 - c16 Pr7 - c17 Pr7 - c18 Pr7 - c19 Pr7 - c20 Pr7 - c15 Pr7 - c28 Pr7 - c23 Pr7 - c24 Pr7 - c25 Pr7 - c26 Pr7 - c27 Pr7 - c22 Pr7 - c35 Pr7 - c30 Pr7 - c31 Pr7 - c32 Pr7 - c33 Pr7 - c34 Pr7 - c29 Pr7 - c42 Pr7 - c37 Pr7 - c38 Pr7 - c39 Pr7 - c40 Pr7 - c41 Pr7 - c36 Pr7 - c7 Pr7 - c2 Pr7 - c3 Pr7 - c4 Pr7 - c5 Pr7 - c6 Pr7 - c1
with Pr7 = 2 * s7 / 7 the pair sum for the corresponding Magic Sum s7.
with a(i) independent for i = 9, 10, 11, 16, 17, 18, 23, 24, 25 and 41, 42, 48, 49 (sub squares) With c(i) the cube variables and the substitution: |
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 =
c1 c2 c3 c4 c5 c6 c7 c50 c51 c52 c53 c54 c55 c56 c99 c100 c101 c102 c103 c104 c105 c148 c149 c150 c151 c152 c153 c154 c197 c198 c199 c200 c201 c202 c203 c246 c247 c248 c249 c250 c251 c252 c295 c296 c297 c298 c299 c300 c301
the defining equations of the Back Square (Semi Magic, Broken Rows) can be written as:
a(14) = s7 - a(7) - a(21) - a(28) - a(35) - a(42) - a(49) a(13) = s7 - a(6) - a(20) - a(27) - a(34) - a(41) - a(48) a(12) = s7 - a(5) - a(19) - a(26) - a(33) - a(40) - a(47) a(11) = s7 - a(4) - a(18) - a(25) - a(32) - a(39) - a(46) a(10) = s7 - a(3) - a(17) - a(24) - a(31) - a(38) - a(45) a( 9) = s7 - a(2) - a(16) - a(23) - a(30) - a(37) - a(44) a( 8) = s7 - a(9) - a(10) - a(11) - a(12) - a(13) - a(14)
with a(i) independent for i = 16 ... 18, 23 ... 25, 30 ... 32, 37 ... 39, 20, 21, 27, 28, 34, 35, 41, 42 |
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 =
c1 c8 c15 c22 c29 c36 c43 c50 c57 c64 c71 c78 c85 c92 c99 c106 c113 c120 c127 c134 c141 c148 c155 c162 c169 c176 c183 c190 c197 c204 c211 c218 c225 c232 c239 c246 c253 c260 c267 c274 c281 c288 c295 c302 c309 c316 c323 c330 c337
the defining equations of the Left Square (Semi Magic) can be written as: a(13) = s7 - a( 6) - a(20) - a(27) - a(34) - a(41) - a(48) a(12) = s7 - a( 5) - a(19) - a(26) - a(33) - a(40) - a(47) a(11) = s7 - a( 4) - a(18) - a(25) - a(32) - a(39) - a(46) a(37) = s7 - a(36) - a(38) - a(39) - a(40) - a(41) - a(42) a(30) = s7 - a(29) - a(31) - a(32) - a(33) - a(34) - a(35) a(23) = s7 - a(22) - a(24) - a(25) - a(26) - a(27) - a(28) a(10) = s7 - a( 3) - a(17) - a(24) - a(31) - a(38) - a(45) a(16) = s7 - a(15) - a(17) - a(18) - a(19) - a(20) - a(21) a( 9) = s7 - a( 8) - a(10) - a(11) - a(12) - a(13) - a(14)
with a(i) independent for i = 17 ... 20, 24 ... 27, 31 ... 34 and 38 ... 41;
Based on the equations listed above, guessing routines can be written to generate Prime Number Bordered Magic Cubes of order 7 within a reasonable time (PrimeCubes7).
7.5.3 Construction Method, Magic Surface Planes (s-Magic)
Based on the Anti Symmetric Semi Magic Surface Planes as constructed in Section 7.5.2 above, numerous Anti Symmetric Magic Squares can be obtained by means of row and column permutations.
With c(i) the cube variables and the substitution: |
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 =
c1 c2 c3 c4 c5 c6 c7 c50 c51 c52 c53 c54 c55 c56 c99 c100 c101 c102 c103 c104 c105 c148 c149 c150 c151 c152 c153 c154 c197 c198 c199 c200 c201 c202 c203 c246 c247 c248 c249 c250 c251 c252 c295 c296 c297 c298 c299 c300 c301
the defining equations of the Back Square (Magic, Broken Rows) can be written as:
a(14) = s7 - a( 7) - a(21) - a(28) - a(35) - a(42) - a(49) a(13) = s7 - a( 6) - a(20) - a(27) - a(34) - a(41) - a(48) a(12) = s7 - a( 5) - a(19) - a(26) - a(33) - a(40) - a(47) a( 9) = s7 - a(17) - a(25) - a(33) - a(41) - a( 1) - a(49) a(31) = s7 - a( 7) - a(13) - a(19) - a(25) - a(37) - a(43) a(11) = s7 - a( 4) - a(18) - a(25) - a(32) - a(39) - a(46) a(10) = s7 - a( 3) - a(17) - a(24) - a(31) - a(38) - a(45) a(16) = s7 - a( 2) - a( 9) - a(23) - a(30) - a(37) - a(44) a( 8) = s7 - a( 9) - a(10) - a(11) - a(12) - a(13) - a(14)
with a(i) independent for i = 17, 18, 23 ... 25, 30, 32, 37 ... 39, 20, 21, 27, 28, 34, 35, 41, 42 |
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 =
c1 c8 c15 c22 c29 c36 c43 c50 c57 c64 c71 c78 c85 c92 c99 c106 c113 c120 c127 c134 c141 c148 c155 c162 c169 c176 c183 c190 c197 c204 c211 c218 c225 c232 c239 c246 c253 c260 c267 c274 c281 c288 c295 c302 c309 c316 c323 c330 c337
the defining equations of the Left Square (Magic) can be written as: a( 9) = s7 - a(17) - a(25) - a(33) - a(41) - a( 1) - a(49) a(13) = s7 - a(19) - a(25) - a(31) - a(37) - a( 7) - a(43) a(16) = s7 - a(17) - a(18) - a(19) - a(20) - a(15) - a(21) a(30) = s7 - a( 9) - a(16) - a(23) - a(37) - a( 2) - a(44) a(34) = s7 - a(41) - a(27) - a(20) - a(13) - a( 6) - a(48) a(32) = s7 - a(30) - a(31) - a(33) - a(34) - a(29) - a(35) a(24) = s7 - a(23) - a(25) - a(26) - a(27) - a(22) - a(28) a(39) = s7 - a(11) - a(18) - a(25) - a(32) - a( 4) - a(46) a(38) = s7 - a(10) - a(17) - a(24) - a(31) - a( 3) - a(45) a(12) = s7 - a( 9) - a(10) - a(11) - a(13) - a( 8) - a(14) a(40) = s7 - a(37) - a(38) - a(39) - a(41) - a(36) - a(42)
with a(i) independent for i = 10, 11, 17 ... 20, 23, 25 ... 27, 31, 33, 37 and 41;
Based on the equations listed above, guessing routines can be written to generate Prime Number Bordered Magic Cubes of order 7 - with magic surface planes - within a reasonable time (PrimeCubes71).
7.6 Bordered Magic Cubes (8 x 8 x 8)
Bordered Magic Cubes of order 8 - with Semi Magic Surface Planes -
can be constructed based on Complementary Anti Symmetric Semi Magic Squares.
7.6.2 Construction Method, Semi Magic Surface Planes
The construction method, based on this principle, can be summarized as follows:
The relation between opposite surface squares (symmetry) can be represented as follows: |
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40 c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60 c61 c62 c63 c64
p - c64 p - c58 p - c59 p - c60 p - c61 p - c62 p - c63 p - c57 p - c16 p - c10 p - c11 p - c12 p - c13 p - c14 p - c15 p - c9 p - c24 p - c18 p - c19 p - c20 p - c21 p - c22 p - c23 p - c17 p - c32 p - c26 p - c27 p - c28 p - c29 p - c30 p - c31 p - c25 p - c40 p - c34 p - c35 p - c36 p - c37 p - c38 p - c39 p - c33 p - c48 p - c42 p - c43 p - c44 p - c45 p - c46 p - c47 p - c41 p - c56 p - c50 p - c51 p - c52 p - c53 p - c54 p - c55 p - c49 p - c8 p - c2 p - c3 p - c4 p - c5 p - c6 p - c7 p - c1
with p = s8 / 4 the pair sum for the corresponding Magic Sum s8.
|
a1(1) a1(2) a1(3) a1(4) a2(1) a2(2) a2(3) a2(4) a1(5) a1(6) a1(7) a1(8) a2(5) a2(6) a2(7) a2(8) a1(9) a1(10) a1(11) a1(12) a2(9) a2(10) a2(11) a2(12) a1(13) a1(14) a1(15) a1(16) a2(13) a2(14) a2(15) a2(16) a3(1) a3(2) a3(3) a3(4) a4(1) a4(2) a4(3) a4(4) a3(5) a3(6) a3(7) a3(8) a4(5) a4(6) a4(7) a4(8) a3(9) a3(10) a3(11) a3(12) a4(9) a4(10) a4(11) a4(12) a3(13) a3(14) a3(15) a3(16) a4(13) a4(14) a4(15) a4(16) =
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40 c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60 c61 c62 c63 c64
the defining equations of the Top Square (Composed, Semi Magic) can be written as: a'(1) = a'( 6) + a'( 7) + a'( 8) - a'( 9) - a'(13) a'(2) = s4 - a'( 6) - a'(10) - a'(14) a'(3) = s4 - a'( 7) - a'(11) - a'(15) a'(4) = -s4 - a'( 8) + a'( 9) + a'(10) + a'(11) + a'(13) + a'(14) + a'(15) a'(5) = s4 - a'( 6) - a'( 7) - a'( 8) a'(9) = s4 - a'(10) - a'(11) - a'(12) a'(13) = s4 - a'(14) - a'(15) - a'(16)
with a'(i) = aj(i) independent for i = 6, 7, 8, 10, 11, 12, 14, 15, 16 and j = 1 ... 4
|
a1(13) a1(14) a1(15) a1(16) a2(13) a2(14) a2(15) a2(16) a1(9) a1(10) a1(11) a1(12) a2(9) a2(10) a2(11) a2(12) a1(5) a1(6) a1(7) a1(8) a2(5) a2(6) a2(7) a2(8) a1(1) a1(2) a1(3) a1(4) a2(1) a2(2) a2(3) a2(4) a3(1) a4(2) a4(3) a4(4) a3(2) a3(3) a3(4) a4(1) a3(5) a4(6) a4(7) a4(8) a3(6) a3(7) a3(8) a4(5) a3(9) a4(10) a4(11) a4(12) a3(10) a3(11) a3(12) a4(9) a3(13) a4(14) a4(15) a4(16) a3(14) a3(15) a3(16) a4(13) =
c1 c2 c3 c4 c5 c6 c7 c8 c65 c66 c67 c68 c69 c70 c71 c72 c129 c130 c131 c132 c133 c134 c135 c136 c193 c194 c195 c196 c197 c198 c199 c200 c257 c258 c259 c260 c261 c262 c263 c264 c321 c322 c323 c324 c325 c326 c327 c328 c385 c386 c387 c388 c389 c390 c391 c392 c449 c450 c451 c452 c453 c454 c455 c456
with aj(i) independent for i = 6, 7, 8, 10, 11, 12 and j = 1 ... 4 |
a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) a(16) a(17) a(18) a(19) a(20) a(21) a(22) a(23) a(24) a(25) a(26) a(27) a(28) a(29) a(30) a(31) a(32) a(33) a(34) a(35) a(36) a(37) a(38) a(39) a(40) a(41) a(42) a(43) a(44) a(45) a(46) a(47) a(48) a(49) a(50) a(51) a(52) a(53) a(54) a(55) a(56) a(57) a(58) a(59) a(60) a(61) a(62) a(63) a(64) =
c1 c9 c17 c25 c33 c41 c49 c57 c65 c73 c81 c89 c97 c105 c113 c121 c129 c137 c145 c153 c161 c169 c177 c185 c193 c201 c209 c217 c225 c233 c241 c249 c257 c265 c273 c281 c289 c297 c305 c313 c321 c329 c337 c345 c353 c361 c369 c377 c385 c393 c401 c409 c417 c425 c433 c441 c449 c457 c465 c473 c481 c489 c497 c505
the defining equations of the Left Square (Semi Magic, Broken Rows) can be written as:
a(37) = s8 - a(13) - a(21) - a(29) - a(45) - a(53) - a( 5) - a(61) a(38) = s8 - a(14) - a(22) - a(30) - a(46) - a(54) - a( 6) - a(62) a(39) = s8 - a(15) - a(23) - a(31) - a(47) - a(55) - a( 7) - a(63) a(45) = s8 - a(46) - a(47) - a(42) - a(43) - a(44) - a(41) - a(48) a(53) = s8 - a(54) - a(55) - a(56) - a(49) - a(50) - a(51) - a(52)
with a(i) independent for i =
10, 11, 14, 15,
18, 19, 22, 23,
30, 31,
42, 43, 44, 46, 47,
50, 51, 52, 54, 55 The obtained results regarding the miscellaneous Prime Number Bordered Magic Cubes as deducted and discussed in previous sections are summarized in following table: |
Order
Main Characteristics
Subroutine
Results
5
Semi Magic Surface Planes (Makarova)
-
Magic Top/Bottom Planes
Magic Top/Bottom and Back/Front Planes
Magic Surface Planes (s-Magic)
6
Semi Magic Surface Planes
Magic Top/Bottom Planes
Magic Surface Planes (s-Magic)
7
Semi Magic Surface Planes
Magic Surface Planes (s-Magic)
8
Semi Magic Surface Planes
-
-
-
-
Comparable routines as listed above, can be used to generate Associated Prime Number Magic Cubes, which will be described in following sections.
|
Index | About the Author |