Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.8 Magic Squares (10 x 10), Part II
Miscellaneous types of order 10 Prime Number Magic Squares - composed of order 4 and order 6 Magic Sub Squares - have been discussed in previous section(s).
14.8.13 Composed Magic Squares (10 x 10) Prime Number Magic Squares of order 10 - with Magic Sum 2 * s1 - can be composed out of 5th order Prime Number Pan Magic Squares with Magic Sum s1.
In section 14.3.1, a procedure was developed to generate 5th order Prime Number Pan Magic Squares with Magic Sum s1.
14.8.14 Pan Magic Squares (10 x 10) Prime Number Magic Squares composed of Pan Magic Sub Squares, as discussed in Section 14.8.13 above, can be transformed into (Inlaid) Pan Magic Squares as illustrated below: |
Composed (Mc10 =- 29570)
17 2897 5657 3593 2621 71 2069 5087 5147 2411 3677 2957 2591 2903 2657 5231 3797 2381 2087 1289 5477 2663 677 3041 2927 4397 1307 1433 3881 3767 41 3011 5813 5237 683 83 3851 5783 3617 1451 5573 3257 47 11 5897 5003 3761 101 53 5867 587 2447 4451 4211 3089 1901 4721 5351 2579 233 5081 2753 3023 2837 1091 3413 269 1193 5639 4271 5273 1481 1721 3623 2687 4931 5189 2333 1103 1229 263 3557 4937 3917 2111 23 2063 4967 4481 3251 3581 4547 653 197 5807 4517 2543 941 983 5801 PM (Mc10 =- 29570)
17 71 2897 2069 5657 5087 3593 5147 2621 2411 587 1901 2447 4721 4451 5351 4211 2579 3089 233 3677 5231 2957 3797 2591 2381 2903 2087 2657 1289 5081 3413 2753 269 3023 1193 2837 5639 1091 4271 5477 4397 2663 1307 677 1433 3041 3881 2927 3767 5273 4931 1481 5189 1721 2333 3623 1103 2687 1229 41 83 3011 3851 5813 5783 5237 3617 683 1451 263 23 3557 2063 4937 4967 3917 4481 2111 3251 5573 5003 3257 3761 47 101 11 53 5897 5867 3581 4517 4547 2543 653 941 197 983 5807 5801
The resulting (Inlaid) Pan Magic Squares are Four Way V type Zig Zag.
14.8.15 Associated Magic Squares (10 x 10) Associated Magic Squares, composed of four each Simple Magic Squares, contain two sets of Complementary Anti Symmetric Magic Squares, as discussed in Section 14.3.10.
Subject Composed Magic Squares can be transformed into (Inlaid) Four Way V type ZigZag Magic Squares by means of the transformation
illustrated below for respectively:
Inlaid Four Way V type ZigZag Associated Magic Square B1, Mc10 = 26950: |
A1 (Associated)
4153 3823 877 829 3793 1861 2953 1423 2269 4969 1783 661 2797 3631 4603 4933 2161 1459 1663 3259 1129 5077 1933 2677 2659 271 5233 4813 2389 769 3019 727 4759 4639 331 4657 277 3697 2503 2341 3391 3187 3109 1699 2089 1753 2851 2083 4651 2137 3253 739 3307 2539 3637 3301 3691 2281 2203 1999 3049 2887 1693 5113 733 5059 751 631 4663 2371 4621 3001 577 157 5119 2731 2713 3457 313 4261 2131 3727 3931 3229 457 787 1759 2593 4729 3607 421 3121 3967 2437 3529 1597 4561 4513 1567 1237 B1 (Associated)
4153 1861 3823 2953 877 1423 829 2269 3793 4969 3253 3301 739 3691 3307 2281 2539 2203 3637 1999 1783 4933 661 2161 2797 1459 3631 1663 4603 3259 3049 5059 2887 751 1693 631 5113 4663 733 2371 1129 271 5077 5233 1933 4813 2677 2389 2659 769 4621 2731 3001 2713 577 3457 157 313 5119 4261 3019 4657 727 277 4759 3697 4639 2503 331 2341 2131 787 3727 1759 3931 2593 3229 4729 457 3607 3391 1753 3187 2851 3109 2083 1699 4651 2089 2137 421 1597 3121 4561 3967 4513 2437 1567 3529 1237
Inlaid Four Way V type ZigZag Croswise Symmetric Magic Square B2, Mc10 = 26950: |
A2 (PM Complete)
4153 3823 877 829 3793 4969 2269 1423 2953 1861 1783 661 2797 3631 4603 3259 1663 1459 2161 4933 1129 5077 1933 2677 2659 769 2389 4813 5233 271 3019 727 4759 4639 331 2341 2503 3697 277 4657 3391 3187 3109 1699 2089 2137 4651 2083 2851 1753 421 3121 3967 2437 3529 1237 1567 4513 4561 1597 2131 3727 3931 3229 457 3607 4729 2593 1759 787 4621 3001 577 157 5119 4261 313 3457 2713 2731 3049 2887 1693 5113 733 2371 4663 631 751 5059 3253 739 3307 2539 3637 1999 2203 2281 3691 3301 B2 (Cross Symm)
4153 4969 3823 2269 877 1423 829 2953 3793 1861 421 1237 3121 1567 3967 4513 2437 4561 3529 1597 1783 3259 661 1663 2797 1459 3631 2161 4603 4933 2131 3607 3727 4729 3931 2593 3229 1759 457 787 1129 769 5077 2389 1933 4813 2677 5233 2659 271 4621 4261 3001 313 577 3457 157 2713 5119 2731 3019 2341 727 2503 4759 3697 4639 277 331 4657 3049 2371 2887 4663 1693 631 5113 751 733 5059 3391 2137 3187 4651 3109 2083 1699 2851 2089 1753 3253 1999 739 2203 3307 2281 2539 3691 3637 3301
Each square shown above and in the referred attachments corresponds with numerous squares for the same Magic Sum.
14.8.16 Composed Magic Squares (10 x 10) Order 10 Prime Number Magic Squares composed of Order 5 (Semi) Magic Sub Squares can be constructed based on:
of Chapter 'Prime Number Magic Cubes'.
Mc10 = 46630
It can be noticed that also the Semi Diagonals sum to the Magic Sum Mc10.
14.8.17 Inlaid Magic Squares (10 x 10) The 10th order Prime Number Inlaid Magic Square shown below, is composed out of a Concentric Border, an Associated Border and four each 3th order Embedded Simple Magic Squares with different Magic Sums.
The method to generate the order 8 Inlaid Magic Center Square with Order 3 Embedded Simple Magic Squares with different Magic Sums
has been discussed in Section 14.6.12.
Attachment 14.8.17 shows for a few Magic Sums the first occurring Bordered - and corresponding Window Type Magic Square.
14.8.18 Inlaid Magic Squares (10 x 10) The 10th order Prime Number Inlaid Magic Square shown below, is composed out of an Associated Border and four each 4th order Embedded Pan Magic Squares with different Magic Sums.
The method to generate Order 10 Inlaid Magic Squares with Order 4 Embedded (Pan) Magic Squares with different Magic Sums
has been discussed in Section 14.21.3.
The obtained results regarding the miscellaneous types of order 10 Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
Composed
Associated Magic Squares
-
Pan Magic and Complete
Euler
Composed
Pan Magic Sub Squares
Order 5 Magic Cube Based
-
Pan Magic
Pan Magic Square Inlays
-
Inlaid
Simple Magic Square Inlays
-
-
-
-
-
Comparable routines as listed above, can be used to generate Prime Number Magic Squares of order 11, which will be described in following sections.
|
Index | About the Author |