Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.8    Magic Squares (10 x 10), Part II

Miscellaneous types of order 10 Prime Number Magic Squares - composed of order 4 and order 6 Magic Sub Squares - have been discussed in previous section(s).

Following sections will deal with order 10 Prime Number Magic Squares, composed of order 5 (semi) Magic Sub Squares and miscellaneous types of Inlaid Magic Squares.

14.8.13 Composed Magic Squares (10 x 10)
        Pan Magic Sub Squares (5 x 5)


Prime Number Magic Squares of order 10 - with Magic Sum 2 * s1 - can be composed out of 5th order Prime Number Pan Magic Squares with Magic Sum s1.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
a11 a12 a13 a14 a15 a16 a17 a18 a19 a20
a21 a22 a23 a24 a25 a26 a27 a28 a29 a30
a31 a32 a33 a34 a35 a36 a37 a38 a39 a40
a41 a42 a43 a44 a45 a46 a47 a48 a49 a50
a51 a52 a53 a54 a55 a56 a57 a58 a59 a60
a61 a62 a63 a64 a65 a66 a67 a68 a69 a70
a71 a72 a73 a74 a75 a76 a77 a78 a79 a80
a81 a82 a83 a84 a85 a86 a87 a88 a89 a90
a91 a92 a93 a94 a95 a96 a97 a98 a99 a100

In section 14.3.1, a procedure was developed to generate 5th order Prime Number Pan Magic Squares with Magic Sum s1.

With some minor modifications subject procedure can be used to find a set of 4 (or more) Prime Number Pan Magic Squares with Magic Sum s1 - each containing 25 different Prime Numbers.

Attachment 14.8.1 contains a few of such sets which were found by means of procedure Priem5b3.

Each set of four squares can be arranged in 24 ways into a 10th order Prime Number Magic Square with Magic Sum 2 * s1 as shown in Attachment 14.8.2 for Mc10 = 2 * 2925 = 5850.

Further we should realize that each Pan Magic Square of the 5th order, based on a set of 25 distinct integers, is a member of a collection of 28800 Pan Magic Square of the 5th order.

Consequently, based on one single set of 4 Prime Number Pan Magic Squares of the 5th order as shown in Attachment 14.8.1, 24 * 288004 = 1,65 1019 Prime Number Magic Squares of the 10th order can be constructed.

Attachment 14.8.3 contains miscellaneous Prime Number Magic Squares composed of Pan Magic Sub Squares as generated with procedure Priem5b3.

14.8.14 Pan Magic Squares (10 x 10)
        Pan Magic Square Inlays (5 x 5)


Prime Number Magic Squares composed of Pan Magic Sub Squares, as discussed in Section 14.8.13 above, can be transformed into (Inlaid) Pan Magic Squares as illustrated below:

Composed (Mc10 =- 29570)
17 2897 5657 3593 2621 71 2069 5087 5147 2411
3677 2957 2591 2903 2657 5231 3797 2381 2087 1289
5477 2663 677 3041 2927 4397 1307 1433 3881 3767
41 3011 5813 5237 683 83 3851 5783 3617 1451
5573 3257 47 11 5897 5003 3761 101 53 5867
587 2447 4451 4211 3089 1901 4721 5351 2579 233
5081 2753 3023 2837 1091 3413 269 1193 5639 4271
5273 1481 1721 3623 2687 4931 5189 2333 1103 1229
263 3557 4937 3917 2111 23 2063 4967 4481 3251
3581 4547 653 197 5807 4517 2543 941 983 5801
PM (Mc10 =- 29570)
17 71 2897 2069 5657 5087 3593 5147 2621 2411
587 1901 2447 4721 4451 5351 4211 2579 3089 233
3677 5231 2957 3797 2591 2381 2903 2087 2657 1289
5081 3413 2753 269 3023 1193 2837 5639 1091 4271
5477 4397 2663 1307 677 1433 3041 3881 2927 3767
5273 4931 1481 5189 1721 2333 3623 1103 2687 1229
41 83 3011 3851 5813 5783 5237 3617 683 1451
263 23 3557 2063 4937 4967 3917 4481 2111 3251
5573 5003 3257 3761 47 101 11 53 5897 5867
3581 4517 4547 2543 653 941 197 983 5807 5801

The resulting (Inlaid) Pan Magic Squares are Four Way V type Zig Zag.

Attachment 14.8.5 shows the Pan Magic Squares, which can be obtained by transformation of the Composed Magic Squares as shown in Attachment 14.8.3.

Each square shown corresponds with numerous (Inlaid) Pan Magic Squares with the same Magic Sum.

14.8.15 Associated Magic Squares (10 x 10)
        Composed of Simple Magic Squares (5 x 5)


Associated Magic Squares, composed of four each Simple Magic Squares, contain two sets of Complementary Anti Symmetric Magic Squares, as discussed in Section 14.3.10.

  • Attachment 14.8.65 shows examples of such suitable 5th order Anti Symmetric Magic Squares;

  • Attachment 14.8.66 shows for miscellaneous Magic Sums the related 10th order Associated Magic Squares;

  • Attachment 14.8.67 shows the corresponding Pan Magic and Complete Magic Squares (Eulers Transformation).

Subject Composed Magic Squares can be transformed into (Inlaid) Four Way V type ZigZag Magic Squares by means of the transformation illustrated below for respectively:

Inlaid Four Way V type ZigZag Associated Magic Square B1, Mc10 = 26950:

A1 (Associated)
4153 3823 877 829 3793 1861 2953 1423 2269 4969
1783 661 2797 3631 4603 4933 2161 1459 1663 3259
1129 5077 1933 2677 2659 271 5233 4813 2389 769
3019 727 4759 4639 331 4657 277 3697 2503 2341
3391 3187 3109 1699 2089 1753 2851 2083 4651 2137
3253 739 3307 2539 3637 3301 3691 2281 2203 1999
3049 2887 1693 5113 733 5059 751 631 4663 2371
4621 3001 577 157 5119 2731 2713 3457 313 4261
2131 3727 3931 3229 457 787 1759 2593 4729 3607
421 3121 3967 2437 3529 1597 4561 4513 1567 1237
B1 (Associated)
4153 1861 3823 2953 877 1423 829 2269 3793 4969
3253 3301 739 3691 3307 2281 2539 2203 3637 1999
1783 4933 661 2161 2797 1459 3631 1663 4603 3259
3049 5059 2887 751 1693 631 5113 4663 733 2371
1129 271 5077 5233 1933 4813 2677 2389 2659 769
4621 2731 3001 2713 577 3457 157 313 5119 4261
3019 4657 727 277 4759 3697 4639 2503 331 2341
2131 787 3727 1759 3931 2593 3229 4729 457 3607
3391 1753 3187 2851 3109 2083 1699 4651 2089 2137
421 1597 3121 4561 3967 4513 2437 1567 3529 1237

Inlaid Four Way V type ZigZag Croswise Symmetric Magic Square B2, Mc10 = 26950:

A2 (PM Complete)
4153 3823 877 829 3793 4969 2269 1423 2953 1861
1783 661 2797 3631 4603 3259 1663 1459 2161 4933
1129 5077 1933 2677 2659 769 2389 4813 5233 271
3019 727 4759 4639 331 2341 2503 3697 277 4657
3391 3187 3109 1699 2089 2137 4651 2083 2851 1753
421 3121 3967 2437 3529 1237 1567 4513 4561 1597
2131 3727 3931 3229 457 3607 4729 2593 1759 787
4621 3001 577 157 5119 4261 313 3457 2713 2731
3049 2887 1693 5113 733 2371 4663 631 751 5059
3253 739 3307 2539 3637 1999 2203 2281 3691 3301
B2 (Cross Symm)
4153 4969 3823 2269 877 1423 829 2953 3793 1861
421 1237 3121 1567 3967 4513 2437 4561 3529 1597
1783 3259 661 1663 2797 1459 3631 2161 4603 4933
2131 3607 3727 4729 3931 2593 3229 1759 457 787
1129 769 5077 2389 1933 4813 2677 5233 2659 271
4621 4261 3001 313 577 3457 157 2713 5119 2731
3019 2341 727 2503 4759 3697 4639 277 331 4657
3049 2371 2887 4663 1693 631 5113 751 733 5059
3391 2137 3187 4651 3109 2083 1699 2851 2089 1753
3253 1999 739 2203 3307 2281 2539 3691 3637 3301

Each square shown above and in the referred attachments corresponds with numerous squares for the same Magic Sum.

Notes:
For the Associated Magic Squares B1 also the Semi Diagonals sum to the Magic Sum.
For the Crosswise Symmetric Magic Squares B2 also half of the Broken Diagonals sum to the Magic Sum.

14.8.16 Composed Magic Squares (10 x 10)
        Order 5 Magic Cube Based


Order 10 Prime Number Magic Squares composed of Order 5 (Semi) Magic Sub Squares can be constructed based on:

  • Prime Number Concentric Magic Cubes, as deducted in Section 7.3.3 or

  • Prime Number Associated Magic Cubes, as deducted in Section 7.7.2

of Chapter 'Prime Number Magic Cubes'.

A typical example of an order 10 Prime Number Composed Magic Square, based on the planes of a Prime Number Concentric Magic Cube of half the Magic Sum, is shown below.

Mc10 = 46630
523 7549 2503 5167 7573 9133 8893 5107 139 43
7873 7 3673 6073 5689 2269 9103 1627 3259 7057
8233 7039 5323 2593 127 1723 1567 6679 5743 7603
6247 3907 3499 8599 1063 907 3319 5683 4987 8419
439 4813 8317 883 8863 9283 433 4219 9187 193
4903 277 6607 4999 6529 463 4513 1009 8443 8887
6373 4339 3643 6007 2953 3637 9319 5653 3253 1453
3373 3583 2647 7759 5953 9199 2287 4003 6733 1093
5869 6067 7699 223 3457 8263 5419 5827 727 3079
2797 9049 2719 4327 4423 1753 1777 6823 4159 8803

It can be noticed that also the Semi Diagonals sum to the Magic Sum Mc10.

Subject Composed Magic Squares can be transformed into four Way V type ZigZag Magic Squares by means of the transformation described in Section 14.8.15 above.

Attachment 14.8.4 shows for miscellaneous Magic Sums the first occurring Composed Magic Square described above.

14.8.17 Inlaid Magic Squares (10 x 10)
        Simple Magic Square Inlays (3 x 3)


The 10th order Prime Number Inlaid Magic Square shown below, is composed out of a Concentric Border, an Associated Border and four each 3th order Embedded Simple Magic Squares with different Magic Sums.

Mc10 = 6150
29 43 59 67 773 953 1033 1039 1063 1091
199 1213 769 521 353 311 479 727 547 1031
653 991 1151 89 557 1123 109 607 293 577
659 421 5 599 1193 97 613 1129 863 571
787 181 641 1109 47 619 1117 103 1103 443
857 127 1097 263 491 1051 409 433 1049 373
883 367 11 617 1223 13 631 1249 809 347
947 937 743 971 137 829 853 211 239 283
997 683 503 751 919 877 709 461 17 233
139 1187 1171 1163 457 277 197 191 167 1201
s3
1797 1839
1851 1893

The method to generate the order 8 Inlaid Magic Center Square with Order 3 Embedded Simple Magic Squares with different Magic Sums has been discussed in Section 14.6.12.

The order 10 Bordered Magic Square shown above can be transformed into the Window Type Magic Square shown below:

Mc10 = 6150
29 43 59 67 773 953 1033 1039 1063 1091
199 1151 89 557 991 293 1123 109 607 1031
653 5 599 1193 421 863 97 613 1129 577
659 641 1109 47 181 1103 619 1117 103 571
787 769 521 353 1213 547 311 479 727 443
857 503 751 919 683 17 877 709 461 373
883 1097 263 491 127 1049 1051 409 433 347
947 11 617 1223 367 809 13 631 1249 283
997 743 971 137 937 239 829 853 211 233
139 1187 1171 1163 457 277 197 191 167 1201
s3
1797 1839
1851 1893

Attachment 14.8.17 shows for a few Magic Sums the first occurring Bordered - and corresponding Window Type Magic Square.

Each square shown corresponds with numerous solutions, which can be obtained by selecting other aspects of the four inlays and variation of the borders (window).

14.8.18 Inlaid Magic Squares (10 x 10)
        (Pan) Magic Square Inlays (4 x 4)


The 10th order Prime Number Inlaid Magic Square shown below, is composed out of an Associated Border and four each 4th order Embedded Pan Magic Squares with different Magic Sums.

Mc10 = 7350
1409 1297 719 563 241 181 503 659 1237 541
1277 229 239 1093 1259 431 421 919 1109 373
863 953 1399 89 379 601 1427 113 739 787
449 317 151 1181 1171 521 331 1009 1019 1201
277 1321 1031 457 11 1327 701 839 13 1373
97 467 487 883 1163 43 47 1471 1499 1193
269 613 1433 197 757 1447 1523 19 71 1021
683 617 337 1033 1013 59 31 1487 1483 607
1097 1303 743 887 67 1511 1459 83 7 193
929 233 811 967 1289 1229 907 751 173 61
s4
2820 2880
3000 3060

The method to generate Order 10 Inlaid Magic Squares with Order 4 Embedded (Pan) Magic Squares with different Magic Sums has been discussed in Section 14.21.3.

14.8.20 Summary

The obtained results regarding the miscellaneous types of order 10 Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:

Type

Characteristics

Subroutine

Results

Composed

Associated Magic Squares

-

Attachment 14.8.66

Pan Magic and Complete

Euler

Attachment 14.8.67

Composed

Pan Magic Sub Squares

Priem5b3

Attachment 14.8.3

Order 5 Magic Cube Based

-

Attachment 14.8.4

Pan Magic

Pan Magic Square Inlays

-

Attachment 14.8.5

Inlaid

Simple Magic Square Inlays

-

Attachment 14.8.17

-

-

-

-

Comparable routines as listed above, can be used to generate Prime Number Magic Squares of order 11, which will be described in following sections.


Vorige Pagina Volgende Pagina Index About the Author