14.0 Special Magic Squares, Prime Numbers
14.13 Consecutive Primes (2)
14.13.10 Simple Magic Squares (10 x 10)
Prime Number Simple Magic Squares of order 10 can be constructed with the Generator Principle, as applied in previous sections.
However, due to the vast amount of possible Magic Series for 100 Consecutive Prime Numbers, only partial collections can be considered.
Suitable Generators (10 Magic Series) can be constructed semi-automatically (ref. CnstrGen10a),
although also Broken Series might be applied as illustrated in following example.
A possible Semi Magic Square and resulting Simple Magic Square are shown below, for the smallest consecutive prime numbers {23 ... 593}
for which an Order 10 Simple Magic Square exists (MC10 = 2862):
Semi Magic Square
137 |
113 |
233 |
449 |
499 |
73 |
197 |
401 |
239 |
521 |
149 |
131 |
227 |
463 |
461 |
97 |
503 |
389 |
353 |
89 |
167 |
251 |
443 |
307 |
263 |
379 |
331 |
61 |
347 |
313 |
487 |
457 |
271 |
109 |
107 |
509 |
83 |
269 |
173 |
397 |
491 |
479 |
257 |
103 |
101 |
373 |
317 |
311 |
359 |
71 |
281 |
53 |
199 |
431 |
467 |
41 |
181 |
593 |
569 |
47 |
211 |
241 |
193 |
367 |
419 |
67 |
571 |
587 |
43 |
163 |
151 |
283 |
337 |
277 |
383 |
577 |
79 |
191 |
37 |
547 |
349 |
421 |
293 |
229 |
139 |
523 |
541 |
31 |
179 |
157 |
439 |
433 |
409 |
127 |
23 |
223 |
59 |
29 |
563 |
557 |
|
Simple Magic Square
137 |
113 |
233 |
449 |
499 |
521 |
239 |
197 |
73 |
401 |
149 |
131 |
227 |
463 |
461 |
89 |
353 |
503 |
97 |
389 |
167 |
251 |
443 |
307 |
263 |
313 |
347 |
331 |
379 |
61 |
487 |
457 |
271 |
109 |
107 |
397 |
173 |
83 |
509 |
269 |
491 |
479 |
257 |
103 |
101 |
71 |
359 |
317 |
373 |
311 |
151 |
283 |
337 |
277 |
383 |
547 |
37 |
79 |
577 |
191 |
281 |
53 |
199 |
431 |
467 |
47 |
569 |
181 |
41 |
593 |
211 |
241 |
193 |
367 |
419 |
163 |
43 |
571 |
67 |
587 |
439 |
433 |
409 |
127 |
23 |
557 |
563 |
59 |
223 |
29 |
349 |
421 |
293 |
229 |
139 |
157 |
179 |
541 |
523 |
31 |
|
The Generator Method has been applied for miscellaneous Magic Sums, for which
the first occurring Simple Magic Squares are shown in Attachment 14.13.9.
Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.
14.13.11 Simple Magic Squares (10 x 10)
Order 3 Square Inlay
Order 10 Simple Magic Squares with order 3 Square Inlay(s) can be constructed with the generator method.
An example of the construction for the consecutive prime numbers {41 ... 613} with the related Magic Sums
s10 = 3092 and s3 = 681 is shown below:
Generator, Order 3 Inlay
317 |
173 |
191 |
53 |
59 |
61 |
419 |
599 |
607 |
613 |
101 |
227 |
353 |
601 |
593 |
563 |
443 |
73 |
71 |
67 |
263 |
281 |
137 |
79 |
83 |
89 |
433 |
569 |
571 |
587 |
577 |
557 |
547 |
523 |
359 |
113 |
109 |
107 |
103 |
97 |
127 |
131 |
139 |
149 |
151 |
331 |
499 |
503 |
521 |
541 |
509 |
487 |
479 |
463 |
307 |
181 |
179 |
167 |
163 |
157 |
193 |
197 |
199 |
211 |
223 |
229 |
421 |
461 |
467 |
491 |
449 |
439 |
431 |
283 |
269 |
257 |
251 |
241 |
239 |
233 |
41 |
409 |
47 |
397 |
277 |
383 |
311 |
373 |
337 |
349 |
347 |
367 |
313 |
379 |
293 |
389 |
271 |
401 |
43 |
457 |
|
Semi Magic, Order 3 Inlay
317 |
173 |
191 |
53 |
59 |
599 |
419 |
607 |
613 |
61 |
101 |
227 |
353 |
601 |
593 |
443 |
71 |
67 |
563 |
73 |
263 |
281 |
137 |
79 |
83 |
569 |
433 |
571 |
89 |
587 |
577 |
557 |
547 |
523 |
359 |
109 |
113 |
103 |
97 |
107 |
499 |
127 |
139 |
149 |
503 |
331 |
151 |
131 |
521 |
541 |
179 |
479 |
487 |
463 |
307 |
157 |
509 |
167 |
163 |
181 |
491 |
211 |
199 |
197 |
229 |
223 |
461 |
421 |
193 |
467 |
251 |
449 |
431 |
283 |
257 |
239 |
233 |
241 |
439 |
269 |
47 |
311 |
337 |
397 |
409 |
379 |
313 |
401 |
41 |
457 |
367 |
277 |
271 |
347 |
293 |
43 |
389 |
383 |
373 |
349 |
|
|
Simple Magic, Order 3 Inlay
523 |
577 |
557 |
547 |
107 |
103 |
109 |
113 |
359 |
97 |
53 |
317 |
173 |
191 |
61 |
607 |
599 |
419 |
59 |
613 |
601 |
101 |
227 |
353 |
73 |
67 |
443 |
71 |
593 |
563 |
79 |
263 |
281 |
137 |
587 |
571 |
569 |
433 |
83 |
89 |
197 |
491 |
211 |
199 |
467 |
421 |
223 |
461 |
229 |
193 |
397 |
47 |
311 |
337 |
457 |
401 |
379 |
313 |
409 |
41 |
149 |
499 |
127 |
139 |
541 |
131 |
331 |
151 |
503 |
521 |
283 |
251 |
449 |
431 |
269 |
241 |
239 |
233 |
257 |
439 |
347 |
367 |
277 |
271 |
349 |
383 |
43 |
389 |
293 |
373 |
463 |
179 |
479 |
487 |
181 |
167 |
157 |
509 |
307 |
163 |
|
The Generator Method, as applied for Inlaid Magic Squares based on Consecutive Prime Numbers can be summarised as follows:
-
The Generator (8 Magic Series, 2 Non Magic Series) can be constructed semi-automatically (ref, CnstrGen10b);
-
The Non Magic Series have been corrected by permutating the numbers within the last two rows;
-
The Semi Magic Square has been constructed by permutating the numbers within the rows, while leaving the order 3 Inlay as constructed;
-
The Magic Square can be obtained semi automatically by permutating the rows and columns within the Semi Magic Square
(ref. CnstrSqrs10).
Potential order 3 Square Inlays (21 unique) have been constructed for the consecutive prime numbers (41 ... 613)
with routine Prime1311
and are shown in Attachment 14.13.11.
The order 3 Square Inlay has been moved (one position) along the Main Diagonal (top/left to bottom/right) by means of row and column permutations.
14.13.12 Simple Magic Squares (10 x 10)
Order 4 Pan Magic Square Inlay
Order 10 Simple Magic Squares with order 4 Pan Magic Square Inlay(s) can be constructed with the generator method.
An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s4 = 1056 is shown below:
Generator, Order 4 Inlay
79 |
89 |
431 |
457 |
41 |
43 |
47 |
541 |
547 |
587 |
389 |
499 |
37 |
131 |
593 |
577 |
463 |
61 |
59 |
53 |
97 |
71 |
449 |
439 |
67 |
73 |
83 |
443 |
569 |
571 |
491 |
397 |
139 |
29 |
563 |
523 |
409 |
107 |
103 |
101 |
109 |
113 |
127 |
137 |
149 |
167 |
479 |
503 |
521 |
557 |
509 |
487 |
461 |
401 |
181 |
179 |
173 |
163 |
157 |
151 |
191 |
193 |
197 |
199 |
211 |
223 |
379 |
383 |
419 |
467 |
433 |
421 |
331 |
257 |
251 |
241 |
239 |
233 |
229 |
227 |
23 |
31 |
263 |
269 |
271 |
277 |
281 |
283 |
293 |
307 |
373 |
367 |
359 |
353 |
349 |
347 |
337 |
317 |
313 |
311 |
|
Semi Magic, Order 4 Inlay
79 |
89 |
431 |
457 |
47 |
41 |
547 |
43 |
541 |
587 |
389 |
499 |
37 |
131 |
593 |
577 |
463 |
59 |
61 |
53 |
97 |
71 |
449 |
439 |
571 |
67 |
83 |
569 |
73 |
443 |
491 |
397 |
139 |
29 |
101 |
523 |
409 |
563 |
103 |
107 |
127 |
137 |
167 |
149 |
113 |
503 |
109 |
479 |
557 |
521 |
487 |
461 |
509 |
401 |
179 |
157 |
173 |
163 |
181 |
151 |
383 |
191 |
223 |
193 |
379 |
467 |
211 |
199 |
419 |
197 |
433 |
421 |
229 |
331 |
251 |
227 |
257 |
239 |
241 |
233 |
353 |
283 |
311 |
373 |
347 |
31 |
293 |
271 |
337 |
263 |
23 |
313 |
367 |
359 |
281 |
269 |
317 |
277 |
349 |
307 |
|
|
Simple Magic, Order 4 Inlay
233 |
433 |
421 |
229 |
331 |
239 |
257 |
251 |
227 |
241 |
587 |
79 |
89 |
431 |
457 |
43 |
547 |
47 |
41 |
541 |
53 |
389 |
499 |
37 |
131 |
59 |
463 |
593 |
577 |
61 |
443 |
97 |
71 |
449 |
439 |
569 |
83 |
571 |
67 |
73 |
107 |
491 |
397 |
139 |
29 |
563 |
409 |
101 |
523 |
103 |
151 |
487 |
461 |
509 |
401 |
163 |
173 |
179 |
157 |
181 |
197 |
383 |
191 |
223 |
193 |
199 |
211 |
379 |
467 |
419 |
263 |
353 |
283 |
311 |
373 |
271 |
293 |
347 |
31 |
337 |
521 |
127 |
137 |
167 |
149 |
479 |
109 |
113 |
503 |
557 |
307 |
23 |
313 |
367 |
359 |
277 |
317 |
281 |
269 |
349 |
|
The Generator Method, as applied for Inlaid Magic Squares based on Consecutive Prime Numbers is described in Section 14.13.11 above.
Potential order 4 Pan Magic Square Inlays have been constructed for the consecutive prime numbers (23 ... 593)
with routine Prime1312
and are shown in Attachment 14.13.12 (one square per occurring magic sum).
The order 4 Pan Magic Square Inlay has been moved (one position) along the Main Diagonal (top/left to bottom/right) by means of row and column permutations.
14.13.13 Simple Magic Squares (10 x 10)
Order 5 Pan Magic Square Inlay
Order 10 Simple Magic Squares with order 5 Pan Magic Square Inlay(s) can be constructed with the generator method.
An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s5 = 1129 is shown below:
Generator, Order 5 Inlay
23 |
67 |
211 |
389 |
439 |
43 |
47 |
463 |
587 |
593 |
241 |
419 |
331 |
59 |
79 |
53 |
61 |
479 |
563 |
577 |
367 |
71 |
109 |
271 |
311 |
73 |
83 |
449 |
557 |
571 |
139 |
163 |
347 |
379 |
101 |
89 |
97 |
431 |
547 |
569 |
359 |
409 |
131 |
31 |
199 |
103 |
107 |
461 |
521 |
541 |
113 |
127 |
137 |
149 |
151 |
167 |
487 |
499 |
509 |
523 |
157 |
173 |
179 |
181 |
191 |
193 |
337 |
457 |
491 |
503 |
197 |
223 |
227 |
229 |
233 |
239 |
251 |
353 |
443 |
467 |
307 |
37 |
317 |
257 |
263 |
269 |
277 |
281 |
421 |
433 |
29 |
313 |
41 |
349 |
373 |
383 |
397 |
401 |
283 |
293 |
|
Semi Magic, Order 5 Inlay
23 |
67 |
211 |
389 |
439 |
43 |
47 |
463 |
587 |
593 |
241 |
419 |
331 |
59 |
79 |
61 |
563 |
577 |
53 |
479 |
367 |
71 |
109 |
271 |
311 |
449 |
73 |
83 |
557 |
571 |
139 |
163 |
347 |
379 |
101 |
547 |
569 |
431 |
89 |
97 |
359 |
409 |
131 |
31 |
199 |
541 |
103 |
461 |
521 |
107 |
523 |
509 |
499 |
487 |
167 |
137 |
151 |
37 |
113 |
239 |
157 |
181 |
191 |
337 |
503 |
491 |
197 |
179 |
349 |
277 |
443 |
467 |
353 |
251 |
233 |
283 |
281 |
229 |
173 |
149 |
317 |
263 |
307 |
257 |
433 |
41 |
421 |
373 |
227 |
223 |
293 |
313 |
383 |
401 |
397 |
269 |
457 |
29 |
193 |
127 |
|
|
Simple Magic, Order 5 Inlay
23 |
67 |
211 |
389 |
439 |
107 |
541 |
521 |
461 |
103 |
241 |
419 |
331 |
59 |
79 |
571 |
449 |
557 |
83 |
73 |
367 |
71 |
109 |
271 |
311 |
479 |
61 |
53 |
577 |
563 |
139 |
163 |
347 |
379 |
101 |
97 |
547 |
89 |
431 |
569 |
359 |
409 |
131 |
31 |
199 |
593 |
43 |
587 |
463 |
47 |
523 |
487 |
167 |
499 |
509 |
239 |
137 |
113 |
37 |
151 |
157 |
337 |
503 |
191 |
181 |
277 |
491 |
349 |
179 |
197 |
443 |
251 |
233 |
353 |
467 |
149 |
283 |
173 |
229 |
281 |
317 |
257 |
433 |
307 |
263 |
223 |
41 |
227 |
373 |
421 |
293 |
401 |
397 |
383 |
313 |
127 |
269 |
193 |
29 |
457 |
|
The construction method is as described in Section 14.13.11 above,
with exception of the last step (main diagonals):
-
The top/left to bottom/right diagonal should be completed by permutating
the columns of the right 5 x 10 rectangle
-
The top/right to bottom/left diagonal should be completed by permutating
the rows of the top/right 5 x 5 corner and
the columns of the bottom/left 5 x 5 corner
Potential order 5 Pan Magic Square Inlays for the consecutive prime numbers (23 ... 593) have been based on La Hirian Primaries as described
in Section 14.12.2.
A few of such Pan Magic Squares are shown in Attachment 14.13.13 (one square per occurring magic sum).
14.13.14 Simple Magic Squares (10 x 10)
Order 5 Magic Square with Diamond Inlay
Alternatively it is possible to construct
Order 10 Simple Magic Squares with order 5 Magic Squares with Diamond Inlay(s).
An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s5 = 1255 is shown below:
Semi Magic, Order 5 Inlay
311 |
47 |
461 |
173 |
263 |
43 |
61 |
347 |
563 |
593 |
257 |
23 |
449 |
59 |
467 |
587 |
569 |
313 |
71 |
67 |
269 |
389 |
251 |
113 |
233 |
73 |
79 |
307 |
571 |
577 |
179 |
443 |
53 |
479 |
101 |
557 |
547 |
331 |
89 |
83 |
239 |
353 |
41 |
431 |
191 |
97 |
103 |
367 |
499 |
541 |
107 |
521 |
137 |
487 |
151 |
439 |
433 |
277 |
281 |
29 |
109 |
491 |
139 |
421 |
157 |
199 |
223 |
373 |
349 |
401 |
359 |
337 |
409 |
383 |
379 |
241 |
293 |
37 |
227 |
197 |
509 |
131 |
419 |
167 |
457 |
397 |
271 |
317 |
31 |
163 |
523 |
127 |
503 |
149 |
463 |
229 |
283 |
193 |
181 |
211 |
|
Simple Magic, Order 5 Inlay
311 |
47 |
461 |
173 |
263 |
103 |
541 |
499 |
367 |
97 |
257 |
23 |
449 |
59 |
467 |
79 |
577 |
571 |
307 |
73 |
269 |
389 |
251 |
113 |
233 |
61 |
593 |
563 |
347 |
43 |
179 |
443 |
53 |
479 |
101 |
569 |
67 |
71 |
313 |
587 |
239 |
353 |
41 |
431 |
191 |
547 |
83 |
89 |
331 |
557 |
137 |
521 |
487 |
151 |
107 |
433 |
29 |
281 |
277 |
439 |
139 |
491 |
421 |
157 |
109 |
223 |
401 |
349 |
373 |
199 |
409 |
337 |
383 |
379 |
359 |
293 |
197 |
227 |
37 |
241 |
419 |
131 |
167 |
457 |
509 |
271 |
163 |
31 |
317 |
397 |
503 |
127 |
149 |
463 |
523 |
283 |
211 |
181 |
193 |
229 |
|
Potential order 5 Magic Squares with Diamond Inlays have been constructed for the consecutive prime numbers (23 ... 593)
with routine Prime1313
and are shown in Attachment 14.13.15 (one square per occurring magic sum).
14.13.15 Simple Magic Squares (10 x 10)
Order 6 Ultra Magic Square Inlay
Order 10 Simple Magic Squares with order 6 Ultra Magic Square Inlay(s) can be constructed with the generator method.
An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s6 = 1638 is shown below:
Semi Magic, Order 6 Inlay
353 |
419 |
263 |
229 |
307 |
67 |
23 |
31 |
577 |
593 |
149 |
179 |
89 |
349 |
463 |
409 |
587 |
571 |
37 |
29 |
173 |
449 |
383 |
157 |
277 |
199 |
41 |
73 |
541 |
569 |
347 |
269 |
389 |
163 |
97 |
373 |
563 |
557 |
61 |
43 |
137 |
83 |
197 |
457 |
367 |
397 |
47 |
107 |
523 |
547 |
479 |
239 |
317 |
283 |
127 |
193 |
521 |
499 |
151 |
53 |
59 |
509 |
71 |
461 |
101 |
379 |
401 |
251 |
337 |
293 |
211 |
503 |
223 |
443 |
271 |
433 |
227 |
181 |
113 |
257 |
467 |
109 |
439 |
241 |
431 |
131 |
313 |
233 |
331 |
167 |
487 |
103 |
491 |
79 |
421 |
281 |
139 |
359 |
191 |
311 |
|
Simple Magic, Order 6 Inlay
353 |
419 |
263 |
229 |
307 |
67 |
23 |
31 |
577 |
593 |
149 |
179 |
89 |
349 |
463 |
409 |
587 |
571 |
37 |
29 |
173 |
449 |
383 |
157 |
277 |
199 |
563 |
557 |
61 |
43 |
347 |
269 |
389 |
163 |
97 |
373 |
41 |
73 |
541 |
569 |
137 |
83 |
197 |
457 |
367 |
397 |
47 |
107 |
523 |
547 |
479 |
239 |
317 |
283 |
127 |
193 |
521 |
499 |
151 |
53 |
59 |
509 |
461 |
71 |
101 |
379 |
401 |
251 |
337 |
293 |
211 |
503 |
443 |
223 |
271 |
433 |
227 |
181 |
113 |
257 |
467 |
109 |
241 |
439 |
431 |
131 |
313 |
233 |
331 |
167 |
487 |
103 |
79 |
491 |
421 |
281 |
139 |
359 |
191 |
311 |
|
The construction method is as described in Section 14.13.11 above,
with exception of the last step (main diagonals):
-
The top/left to bottom/right diagonal should be completed by permutating
the columns of the right 4 x 10 rectangle (if required)
-
The top/right to bottom/left diagonal should be completed by permutating
the rows of the top/right 4 x 6 corner and
the columns of the bottom/left 6 x 4 corner
Potential order 6 Ultra Magic Square Inlays have been constructed for the consecutive prime numbers (23 ... 593)
with routine Prime1314
and are shown in Attachment 14.13.14 (one square per occurring magic sum).
14.13.16 Simple Magic Squares (10 x 10)
Order 3 Square Inlays (4 ea)
Comparable with the above it is possible to construct Order 10 Simple Magic Squares with four order 3 Simple Magic Square Inlays.
An example of subject construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums s10 = 2862 is shown below:
Semi Magic, Order 3 Inlays (4 ea)
313 |
109 |
157 |
439 |
163 |
211 |
23 |
283 |
577 |
587 |
37 |
193 |
349 |
43 |
271 |
499 |
571 |
569 |
263 |
67 |
229 |
277 |
73 |
331 |
379 |
103 |
449 |
257 |
367 |
397 |
491 |
83 |
269 |
557 |
173 |
311 |
223 |
167 |
199 |
389 |
59 |
281 |
503 |
101 |
347 |
593 |
181 |
233 |
337 |
227 |
293 |
479 |
71 |
383 |
521 |
137 |
197 |
139 |
241 |
401 |
29 |
547 |
31 |
487 |
47 |
463 |
373 |
251 |
191 |
443 |
307 |
523 |
433 |
419 |
79 |
359 |
149 |
353 |
127 |
113 |
541 |
317 |
467 |
61 |
421 |
97 |
239 |
179 |
409 |
131 |
563 |
53 |
509 |
41 |
461 |
89 |
457 |
431 |
151 |
107 |
|
Simple Magic 1, Order 3 Inlays (4 ea)
373 |
251 |
29 |
547 |
31 |
487 |
47 |
463 |
191 |
443 |
149 |
353 |
307 |
523 |
433 |
419 |
79 |
359 |
127 |
113 |
23 |
283 |
313 |
109 |
157 |
439 |
163 |
211 |
577 |
587 |
571 |
569 |
37 |
193 |
349 |
43 |
271 |
499 |
263 |
67 |
449 |
257 |
229 |
277 |
73 |
331 |
379 |
103 |
367 |
397 |
223 |
167 |
491 |
83 |
269 |
557 |
173 |
311 |
199 |
389 |
181 |
233 |
59 |
281 |
503 |
101 |
347 |
593 |
337 |
227 |
197 |
139 |
293 |
479 |
71 |
383 |
521 |
137 |
241 |
401 |
239 |
179 |
541 |
317 |
467 |
61 |
421 |
97 |
409 |
131 |
457 |
431 |
563 |
53 |
509 |
41 |
461 |
89 |
151 |
107 |
|
s3
|
Simple Magic 2, Order 3 Inlays (4 ea)
373 |
29 |
547 |
31 |
251 |
191 |
487 |
47 |
463 |
443 |
23 |
313 |
109 |
157 |
283 |
577 |
439 |
163 |
211 |
587 |
571 |
37 |
193 |
349 |
569 |
263 |
43 |
271 |
499 |
67 |
449 |
229 |
277 |
73 |
257 |
367 |
331 |
379 |
103 |
397 |
149 |
307 |
523 |
433 |
353 |
127 |
419 |
79 |
359 |
113 |
239 |
541 |
317 |
467 |
179 |
409 |
61 |
421 |
97 |
131 |
223 |
491 |
83 |
269 |
167 |
199 |
557 |
173 |
311 |
389 |
181 |
59 |
281 |
503 |
233 |
337 |
101 |
347 |
593 |
227 |
197 |
293 |
479 |
71 |
139 |
241 |
383 |
521 |
137 |
401 |
457 |
563 |
53 |
509 |
431 |
151 |
41 |
461 |
89 |
107 |
|
Each square shown above corresponds with
84 * (3!)4 = 5.308.416
solutions, which can be obtained by selecting other aspects of the four inlays and variation of the border (window).
Potential order 3 Simple Magic Square Inlays (unique) for the consecutive prime numbers (23 ... 593),
resulting in 82 valid sets of four,
are shown in Attachment 14.13.16.
14.13.17 Composed Magic Squares (10 x 10)
Order 4 and 6 Simple Magic Sub Squares
When the Magic Sum s10 is a multiple of 10 (e.g. 3500), order 10 (Semi) Magic Squares might be composed of:
-
One 4th order Magic Corner Square with Magic Sum s4 = 4 * s10 / 10 = 1400 (top/left)
-
One 6th order Magic Corner Square with Magic Sum s6 = 6 * s10 / 10 = 2100 (bottom/right)
-
Two Magic Rectangles order 4 x 6 with s4 = 1400 and s6 = 2100
An example is shown below (left) for the consecutive prime numbers {71 ... 653} with the related Magic Sums mentioned above.
Subject (Semi) Magic Squares can be transformed to Order 10 Bordered Magic Squares with order 6 Magic Center Square,
as illustrated below (right):
Composed (Semi) Magic Square
499 |
151 |
109 |
641 |
461 |
281 |
239 |
389 |
263 |
467 |
277 |
491 |
439 |
193 |
233 |
313 |
379 |
353 |
449 |
373 |
443 |
139 |
331 |
487 |
557 |
229 |
241 |
479 |
257 |
337 |
181 |
619 |
521 |
79 |
149 |
577 |
541 |
179 |
431 |
223 |
307 |
211 |
523 |
359 |
617 |
73 |
167 |
571 |
103 |
569 |
367 |
349 |
433 |
251 |
157 |
599 |
97 |
607 |
137 |
503 |
397 |
283 |
409 |
311 |
173 |
631 |
593 |
113 |
463 |
127 |
317 |
227 |
347 |
509 |
421 |
71 |
587 |
107 |
643 |
271 |
419 |
383 |
197 |
401 |
601 |
563 |
199 |
89 |
101 |
547 |
293 |
647 |
191 |
269 |
131 |
163 |
457 |
613 |
653 |
83 |
|
Bordered Magic Square
499 |
151 |
461 |
281 |
239 |
389 |
263 |
467 |
109 |
641 |
277 |
491 |
233 |
313 |
379 |
353 |
449 |
373 |
439 |
193 |
307 |
211 |
617 |
73 |
167 |
571 |
103 |
569 |
523 |
359 |
367 |
349 |
157 |
599 |
97 |
607 |
137 |
503 |
433 |
251 |
397 |
283 |
173 |
631 |
593 |
113 |
463 |
127 |
409 |
311 |
317 |
227 |
421 |
71 |
587 |
107 |
643 |
271 |
347 |
509 |
419 |
383 |
601 |
563 |
199 |
89 |
101 |
547 |
197 |
401 |
293 |
647 |
131 |
163 |
457 |
613 |
653 |
83 |
191 |
269 |
443 |
139 |
557 |
229 |
241 |
479 |
257 |
337 |
331 |
487 |
181 |
619 |
149 |
577 |
541 |
179 |
431 |
223 |
521 |
79 |
|
It should be noted that the reversed transformation is not necessarily possible because of the bottom-left / top-right Main Diagonal.
Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.
14.13.18 Composed Magic Squares (10 x 10)
Order 5 Semi Magic Sub Squares
Order 10 (Semi) Magic Squares might be composed of order 5 (Semi) Magic Sub Squares when the Magic Sum s10 is a multiple of 2.
An example is shown below for the consecutive prime numbers {131 ... 739} with the related Magic Sums s10 = 4222 and s5 = 2111.
Composed Semi Magic Square
167 |
179 |
317 |
709 |
739 |
181 |
163 |
389 |
677 |
701 |
311 |
359 |
601 |
439 |
401 |
719 |
683 |
421 |
149 |
139 |
733 |
727 |
383 |
137 |
131 |
|
193 |
199 |
367 |
661 |
691 |
239 |
241 |
337 |
641 |
653 |
347 |
397 |
463 |
461 |
443 |
659 |
631 |
457 |
191 |
173 |
673 |
643 |
487 |
157 |
151 |
|
263 |
229 |
373 |
599 |
647 |
353 |
293 |
281 |
571 |
613 |
269 |
409 |
499 |
503 |
431 |
607 |
563 |
491 |
227 |
223 |
619 |
617 |
467 |
211 |
197 |
|
541 |
307 |
251 |
419 |
593 |
349 |
257 |
379 |
557 |
569 |
331 |
547 |
523 |
277 |
433 |
313 |
479 |
449 |
587 |
283 |
577 |
521 |
509 |
271 |
233 |
|
|
Composed Simple Magic Square
167 |
739 |
179 |
317 |
709 |
181 |
701 |
163 |
389 |
677 |
311 |
401 |
359 |
601 |
439 |
719 |
139 |
683 |
421 |
149 |
733 |
131 |
727 |
383 |
137 |
|
193 |
661 |
199 |
367 |
691 |
239 |
641 |
241 |
337 |
653 |
347 |
461 |
397 |
463 |
443 |
659 |
191 |
631 |
457 |
173 |
673 |
157 |
643 |
487 |
151 |
|
373 |
647 |
229 |
599 |
263 |
281 |
613 |
293 |
571 |
353 |
499 |
431 |
409 |
503 |
269 |
491 |
223 |
563 |
227 |
607 |
467 |
197 |
617 |
211 |
619 |
|
541 |
419 |
307 |
593 |
251 |
349 |
557 |
257 |
569 |
379 |
331 |
277 |
547 |
433 |
523 |
313 |
587 |
479 |
283 |
449 |
577 |
271 |
521 |
233 |
509 |
|
|
The square left is a Semi Magic Square composed of Semi Magic Sub Squares.
The Simple Magic Square right - also composed of Semi Magic Sub Squsres - is obtained by row and column permutations within the sub squares.
The Composed Simple Magic Square (right) corresponds with
4 * (5!)4 = 829.440.000
squares for the applied diagonal elements (highlighted).
Order 10 Simple Magic Squares composed of (Semi) Magic Sub Squares can be transformed into Four Way V type ZigZag Magic Squares of order 10
as illustrated below:
Composed Simple Magic Square
167 |
739 |
179 |
317 |
709 |
193 |
661 |
199 |
367 |
691 |
181 |
701 |
163 |
389 |
677 |
239 |
641 |
241 |
337 |
653 |
311 |
401 |
359 |
601 |
439 |
347 |
461 |
397 |
463 |
443 |
719 |
139 |
683 |
421 |
149 |
659 |
191 |
631 |
457 |
173 |
733 |
131 |
727 |
383 |
137 |
673 |
157 |
643 |
487 |
151 |
373 |
647 |
229 |
599 |
263 |
541 |
419 |
307 |
593 |
251 |
281 |
613 |
293 |
571 |
353 |
349 |
557 |
257 |
569 |
379 |
499 |
431 |
409 |
503 |
269 |
331 |
277 |
547 |
433 |
523 |
491 |
223 |
563 |
227 |
607 |
313 |
587 |
479 |
283 |
449 |
467 |
197 |
617 |
211 |
619 |
577 |
271 |
521 |
233 |
509 |
|
Four Way V Type ZigZag Magic Square
167 |
193 |
739 |
661 |
179 |
199 |
317 |
367 |
709 |
691 |
373 |
541 |
647 |
419 |
229 |
307 |
599 |
593 |
263 |
251 |
181 |
239 |
701 |
641 |
163 |
241 |
389 |
337 |
677 |
653 |
281 |
349 |
613 |
557 |
293 |
257 |
571 |
569 |
353 |
379 |
311 |
347 |
401 |
461 |
359 |
397 |
601 |
463 |
439 |
443 |
499 |
331 |
431 |
277 |
409 |
547 |
503 |
433 |
269 |
523 |
719 |
659 |
139 |
191 |
683 |
631 |
421 |
457 |
149 |
173 |
491 |
313 |
223 |
587 |
563 |
479 |
227 |
283 |
607 |
449 |
733 |
673 |
131 |
157 |
727 |
643 |
383 |
487 |
137 |
151 |
467 |
577 |
197 |
271 |
617 |
521 |
211 |
233 |
619 |
509 |
|
Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.
14.13.19 Bordered Magic Squares (10 x 10)
Order 8 Simple Magic Sub Squares
The consecutive prime numbers {71 ... 653} - with the related Magic Sum s10 = 3500 - contain 18 regular pairs (pair sum = 700),
which enables the construction of Bordered Magic Squares as illustrated by following examples:
Concentric Border
599 |
461 |
419 |
317 |
257 |
197 |
113 |
269 |
251 |
617 |
191 |
607 |
619 |
97 |
293 |
367 |
401 |
139 |
277 |
509 |
353 |
359 |
79 |
433 |
313 |
457 |
271 |
491 |
397 |
347 |
107 |
223 |
631 |
227 |
193 |
487 |
229 |
157 |
653 |
593 |
179 |
211 |
71 |
643 |
601 |
89 |
499 |
613 |
73 |
521 |
563 |
337 |
283 |
163 |
523 |
571 |
557 |
199 |
167 |
137 |
569 |
263 |
641 |
439 |
241 |
331 |
127 |
181 |
577 |
131 |
389 |
421 |
373 |
151 |
173 |
349 |
307 |
479 |
547 |
311 |
467 |
379 |
103 |
647 |
463 |
149 |
409 |
541 |
109 |
233 |
83 |
239 |
281 |
383 |
443 |
503 |
587 |
431 |
449 |
101 |
|
Eccentric Border
599 |
617 |
461 |
419 |
317 |
257 |
197 |
113 |
269 |
251 |
83 |
101 |
239 |
281 |
383 |
443 |
503 |
587 |
431 |
449 |
191 |
509 |
227 |
631 |
487 |
223 |
653 |
193 |
157 |
229 |
353 |
347 |
433 |
79 |
457 |
359 |
397 |
313 |
491 |
271 |
107 |
593 |
163 |
283 |
571 |
337 |
167 |
523 |
199 |
557 |
179 |
521 |
97 |
619 |
367 |
607 |
277 |
293 |
139 |
401 |
563 |
137 |
647 |
103 |
149 |
379 |
109 |
463 |
541 |
409 |
569 |
131 |
643 |
71 |
89 |
211 |
73 |
601 |
613 |
499 |
389 |
311 |
151 |
373 |
349 |
421 |
547 |
173 |
479 |
307 |
467 |
233 |
439 |
641 |
331 |
263 |
577 |
241 |
181 |
127 |
|
The Order 8 Simple Magic Sub Square (s8 = 2800), constructed with the Generator Principle as applied in previous sections,
corresponds with
8 * 24/2 * (4!) = 8 * 192 = 1536
Sub Squares.
The Concentric Border (left) corresponds with
8 * (8!)2 = 13.005.619.200
borders for the applied corner pairs.
The Eccentric Border (right) corresponds with
2 * (6!)2 = 1.036.800
borders for the applied (aspect of the) Sub Square and corner pairs.
14.13.20 Summary
The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:
|