Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0     Special Magic Squares, Prime Numbers

14.13    Consecutive Primes (2)

14.13.10 Simple Magic Squares (10 x 10)

Prime Number Simple Magic Squares of order 10 can be constructed with the Generator Principle, as applied in previous sections.

However, due to the vast amount of possible Magic Series for 100 Consecutive Prime Numbers, only partial collections can be considered.

Suitable Generators (10 Magic Series) can be constructed semi-automatically (ref. CnstrGen10a), although also Broken Series might be applied as illustrated in following example.

A possible Semi Magic Square and resulting Simple Magic Square are shown below, for the smallest consecutive prime numbers {23 ... 593} for which an Order 10 Simple Magic Square exists (MC10 = 2862):

Semi Magic Square
137 113 233 449 499 73 197 401 239 521
149 131 227 463 461 97 503 389 353 89
167 251 443 307 263 379 331 61 347 313
487 457 271 109 107 509 83 269 173 397
491 479 257 103 101 373 317 311 359 71
281 53 199 431 467 41 181 593 569 47
211 241 193 367 419 67 571 587 43 163
151 283 337 277 383 577 79 191 37 547
349 421 293 229 139 523 541 31 179 157
439 433 409 127 23 223 59 29 563 557
Simple Magic Square
137 113 233 449 499 521 239 197 73 401
149 131 227 463 461 89 353 503 97 389
167 251 443 307 263 313 347 331 379 61
487 457 271 109 107 397 173 83 509 269
491 479 257 103 101 71 359 317 373 311
151 283 337 277 383 547 37 79 577 191
281 53 199 431 467 47 569 181 41 593
211 241 193 367 419 163 43 571 67 587
439 433 409 127 23 557 563 59 223 29
349 421 293 229 139 157 179 541 523 31

The Generator Method has been applied for miscellaneous Magic Sums, for which the first occurring Simple Magic Squares are shown in Attachment 14.13.9.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.11 Simple Magic Squares (10 x 10)
         Order 3 Square Inlay

Order 10 Simple Magic Squares with order 3 Square Inlay(s) can be constructed with the generator method.

An example of the construction for the consecutive prime numbers {41 ... 613} with the related Magic Sums
s10 = 3092 and s3 = 681 is shown below:

Generator, Order 3 Inlay
317 173 191 53 59 61 419 599 607 613
101 227 353 601 593 563 443 73 71 67
263 281 137 79 83 89 433 569 571 587
577 557 547 523 359 113 109 107 103 97
127 131 139 149 151 331 499 503 521 541
509 487 479 463 307 181 179 167 163 157
193 197 199 211 223 229 421 461 467 491
449 439 431 283 269 257 251 241 239 233
41 409 47 397 277 383 311 373 337 349
347 367 313 379 293 389 271 401 43 457
Semi Magic, Order 3 Inlay
317 173 191 53 59 599 419 607 613 61
101 227 353 601 593 443 71 67 563 73
263 281 137 79 83 569 433 571 89 587
577 557 547 523 359 109 113 103 97 107
499 127 139 149 503 331 151 131 521 541
179 479 487 463 307 157 509 167 163 181
491 211 199 197 229 223 461 421 193 467
251 449 431 283 257 239 233 241 439 269
47 311 337 397 409 379 313 401 41 457
367 277 271 347 293 43 389 383 373 349
Simple Magic, Order 3 Inlay
523 577 557 547 107 103 109 113 359 97
53 317 173 191 61 607 599 419 59 613
601 101 227 353 73 67 443 71 593 563
79 263 281 137 587 571 569 433 83 89
197 491 211 199 467 421 223 461 229 193
397 47 311 337 457 401 379 313 409 41
149 499 127 139 541 131 331 151 503 521
283 251 449 431 269 241 239 233 257 439
347 367 277 271 349 383 43 389 293 373
463 179 479 487 181 167 157 509 307 163

The Generator Method, as applied for Inlaid Magic Squares based on Consecutive Prime Numbers can be summarised as follows:

  • The Generator (8 Magic Series, 2 Non Magic Series) can be constructed semi-automatically (ref, CnstrGen10b);
  • The Non Magic Series have been corrected by permutating the numbers within the last two rows;
  • The Semi Magic Square has been constructed by permutating the numbers within the rows, while leaving the order 3 Inlay as constructed;
  • The Magic Square can be obtained semi automatically by permutating the rows and columns within the Semi Magic Square (ref. CnstrSqrs10).

Potential order 3 Square Inlays (21 unique) have been constructed for the consecutive prime numbers (41 ... 613) with routine Prime1311 and are shown in Attachment 14.13.11.

The order 3 Square Inlay has been moved (one position) along the Main Diagonal (top/left to bottom/right) by means of row and column permutations.

14.13.12 Simple Magic Squares (10 x 10)
         Order 4 Pan Magic Square Inlay

Order 10 Simple Magic Squares with order 4 Pan Magic Square Inlay(s) can be constructed with the generator method.

An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s4 = 1056 is shown below:

Generator, Order 4 Inlay
79 89 431 457 41 43 47 541 547 587
389 499 37 131 593 577 463 61 59 53
97 71 449 439 67 73 83 443 569 571
491 397 139 29 563 523 409 107 103 101
109 113 127 137 149 167 479 503 521 557
509 487 461 401 181 179 173 163 157 151
191 193 197 199 211 223 379 383 419 467
433 421 331 257 251 241 239 233 229 227
23 31 263 269 271 277 281 283 293 307
373 367 359 353 349 347 337 317 313 311
Semi Magic, Order 4 Inlay
79 89 431 457 47 41 547 43 541 587
389 499 37 131 593 577 463 59 61 53
97 71 449 439 571 67 83 569 73 443
491 397 139 29 101 523 409 563 103 107
127 137 167 149 113 503 109 479 557 521
487 461 509 401 179 157 173 163 181 151
383 191 223 193 379 467 211 199 419 197
433 421 229 331 251 227 257 239 241 233
353 283 311 373 347 31 293 271 337 263
23 313 367 359 281 269 317 277 349 307
Simple Magic, Order 4 Inlay
233 433 421 229 331 239 257 251 227 241
587 79 89 431 457 43 547 47 41 541
53 389 499 37 131 59 463 593 577 61
443 97 71 449 439 569 83 571 67 73
107 491 397 139 29 563 409 101 523 103
151 487 461 509 401 163 173 179 157 181
197 383 191 223 193 199 211 379 467 419
263 353 283 311 373 271 293 347 31 337
521 127 137 167 149 479 109 113 503 557
307 23 313 367 359 277 317 281 269 349

The Generator Method, as applied for Inlaid Magic Squares based on Consecutive Prime Numbers is described in Section 14.13.11 above.

Potential order 4 Pan Magic Square Inlays have been constructed for the consecutive prime numbers (23 ... 593) with routine Prime1312 and are shown in Attachment 14.13.12 (one square per occurring magic sum).

The order 4 Pan Magic Square Inlay has been moved (one position) along the Main Diagonal (top/left to bottom/right) by means of row and column permutations.

14.13.13 Simple Magic Squares (10 x 10)
         Order 5 Pan Magic Square Inlay

Order 10 Simple Magic Squares with order 5 Pan Magic Square Inlay(s) can be constructed with the generator method.

An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s5 = 1129 is shown below:

Generator, Order 5 Inlay
23 67 211 389 439 43 47 463 587 593
241 419 331 59 79 53 61 479 563 577
367 71 109 271 311 73 83 449 557 571
139 163 347 379 101 89 97 431 547 569
359 409 131 31 199 103 107 461 521 541
113 127 137 149 151 167 487 499 509 523
157 173 179 181 191 193 337 457 491 503
197 223 227 229 233 239 251 353 443 467
307 37 317 257 263 269 277 281 421 433
29 313 41 349 373 383 397 401 283 293
Semi Magic, Order 5 Inlay
23 67 211 389 439 43 47 463 587 593
241 419 331 59 79 61 563 577 53 479
367 71 109 271 311 449 73 83 557 571
139 163 347 379 101 547 569 431 89 97
359 409 131 31 199 541 103 461 521 107
523 509 499 487 167 137 151 37 113 239
157 181 191 337 503 491 197 179 349 277
443 467 353 251 233 283 281 229 173 149
317 263 307 257 433 41 421 373 227 223
293 313 383 401 397 269 457 29 193 127
Simple Magic, Order 5 Inlay
23 67 211 389 439 107 541 521 461 103
241 419 331 59 79 571 449 557 83 73
367 71 109 271 311 479 61 53 577 563
139 163 347 379 101 97 547 89 431 569
359 409 131 31 199 593 43 587 463 47
523 487 167 499 509 239 137 113 37 151
157 337 503 191 181 277 491 349 179 197
443 251 233 353 467 149 283 173 229 281
317 257 433 307 263 223 41 227 373 421
293 401 397 383 313 127 269 193 29 457

The construction method is as described in Section 14.13.11 above, with exception of the last step (main diagonals):

  • The top/left  to bottom/right diagonal should be completed by permutating
    the columns of the right 5 x 10 rectangle
  • The top/right to bottom/left  diagonal should be completed by permutating
    the rows    of the top/right   5 x 5 corner and
    the columns of the bottom/left 5 x 5 corner

Potential order 5 Pan Magic Square Inlays for the consecutive prime numbers (23 ... 593) have been based on La Hirian Primaries as described in Section 14.12.2.

A few of such Pan Magic Squares are shown in Attachment 14.13.13 (one square per occurring magic sum).

14.13.14 Simple Magic Squares (10 x 10)
         Order 5 Magic Square with Diamond Inlay

Alternatively it is possible to construct Order 10 Simple Magic Squares with order 5 Magic Squares with Diamond Inlay(s).

An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums s10 = 2862 and s5 = 1255 is shown below:

Semi Magic, Order 5 Inlay
311 47 461 173 263 43 61 347 563 593
257 23 449 59 467 587 569 313 71 67
269 389 251 113 233 73 79 307 571 577
179 443 53 479 101 557 547 331 89 83
239 353 41 431 191 97 103 367 499 541
107 521 137 487 151 439 433 277 281 29
109 491 139 421 157 199 223 373 349 401
359 337 409 383 379 241 293 37 227 197
509 131 419 167 457 397 271 317 31 163
523 127 503 149 463 229 283 193 181 211
Simple Magic, Order 5 Inlay
311 47 461 173 263 103 541 499 367 97
257 23 449 59 467 79 577 571 307 73
269 389 251 113 233 61 593 563 347 43
179 443 53 479 101 569 67 71 313 587
239 353 41 431 191 547 83 89 331 557
137 521 487 151 107 433 29 281 277 439
139 491 421 157 109 223 401 349 373 199
409 337 383 379 359 293 197 227 37 241
419 131 167 457 509 271 163 31 317 397
503 127 149 463 523 283 211 181 193 229

Potential order 5 Magic Squares with Diamond Inlays have been constructed for the consecutive prime numbers (23 ... 593) with routine Prime1313 and are shown in Attachment 14.13.15 (one square per occurring magic sum).

14.13.15 Simple Magic Squares (10 x 10)
         Order 6 Ultra Magic Square Inlay

Order 10 Simple Magic Squares with order 6 Ultra Magic Square Inlay(s) can be constructed with the generator method.

An example of the construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums
s10 = 2862 and s6 = 1638 is shown below:

Semi Magic, Order 6 Inlay
353 419 263 229 307 67 23 31 577 593
149 179 89 349 463 409 587 571 37 29
173 449 383 157 277 199 41 73 541 569
347 269 389 163 97 373 563 557 61 43
137 83 197 457 367 397 47 107 523 547
479 239 317 283 127 193 521 499 151 53
59 509 71 461 101 379 401 251 337 293
211 503 223 443 271 433 227 181 113 257
467 109 439 241 431 131 313 233 331 167
487 103 491 79 421 281 139 359 191 311
Simple Magic, Order 6 Inlay
353 419 263 229 307 67 23 31 577 593
149 179 89 349 463 409 587 571 37 29
173 449 383 157 277 199 563 557 61 43
347 269 389 163 97 373 41 73 541 569
137 83 197 457 367 397 47 107 523 547
479 239 317 283 127 193 521 499 151 53
59 509 461 71 101 379 401 251 337 293
211 503 443 223 271 433 227 181 113 257
467 109 241 439 431 131 313 233 331 167
487 103 79 491 421 281 139 359 191 311

The construction method is as described in Section 14.13.11 above, with exception of the last step (main diagonals):

  • The top/left  to bottom/right diagonal should be completed by permutating
    the columns of the right 4 x 10 rectangle (if required)
  • The top/right to bottom/left  diagonal should be completed by permutating
    the rows    of the top/right   4 x 6 corner and
    the columns of the bottom/left 6 x 4 corner

Potential order 6 Ultra Magic Square Inlays have been constructed for the consecutive prime numbers (23 ... 593) with routine Prime1314 and are shown in Attachment 14.13.14 (one square per occurring magic sum).

14.13.16 Simple Magic Squares (10 x 10)
         Order 3 Square Inlays (4 ea)

Comparable with the above it is possible to construct Order 10 Simple Magic Squares with four order 3 Simple Magic Square Inlays.

An example of subject construction for the consecutive prime numbers {23 ... 593} with the related Magic Sums s10 = 2862 is shown below:

Semi Magic, Order 3 Inlays (4 ea)
313 109 157 439 163 211 23 283 577 587
37 193 349 43 271 499 571 569 263 67
229 277 73 331 379 103 449 257 367 397
491 83 269 557 173 311 223 167 199 389
59 281 503 101 347 593 181 233 337 227
293 479 71 383 521 137 197 139 241 401
29 547 31 487 47 463 373 251 191 443
307 523 433 419 79 359 149 353 127 113
541 317 467 61 421 97 239 179 409 131
563 53 509 41 461 89 457 431 151 107
Simple Magic 1, Order 3 Inlays (4 ea)
373 251 29 547 31 487 47 463 191 443
149 353 307 523 433 419 79 359 127 113
23 283 313 109 157 439 163 211 577 587
571 569 37 193 349 43 271 499 263 67
449 257 229 277 73 331 379 103 367 397
223 167 491 83 269 557 173 311 199 389
181 233 59 281 503 101 347 593 337 227
197 139 293 479 71 383 521 137 241 401
239 179 541 317 467 61 421 97 409 131
457 431 563 53 509 41 461 89 151 107
s3
579 813
843 1041
Simple Magic 2, Order 3 Inlays (4 ea)
373 29 547 31 251 191 487 47 463 443
23 313 109 157 283 577 439 163 211 587
571 37 193 349 569 263 43 271 499 67
449 229 277 73 257 367 331 379 103 397
149 307 523 433 353 127 419 79 359 113
239 541 317 467 179 409 61 421 97 131
223 491 83 269 167 199 557 173 311 389
181 59 281 503 233 337 101 347 593 227
197 293 479 71 139 241 383 521 137 401
457 563 53 509 431 151 41 461 89 107

Each square shown above corresponds with 84 * (3!)4 = 5.308.416 solutions, which can be obtained by selecting other aspects of the four inlays and variation of the border (window).

Potential order 3 Simple Magic Square Inlays (unique) for the consecutive prime numbers (23 ... 593), resulting in 82 valid sets of four, are shown in Attachment 14.13.16.

14.13.17 Composed Magic Squares (10 x 10)
         Order 4 and 6 Simple Magic Sub Squares

When the Magic Sum s10 is a multiple of 10 (e.g. 3500), order 10 (Semi) Magic Squares might be composed of:

  • One 4th order Magic Corner Square with Magic Sum s4 = 4 * s10 / 10 = 1400 (top/left)
  • One 6th order Magic Corner Square with Magic Sum s6 = 6 * s10 / 10 = 2100 (bottom/right)
  • Two Magic Rectangles order 4 x 6 with s4 = 1400 and s6 = 2100

An example is shown below (left) for the consecutive prime numbers {71 ... 653} with the related Magic Sums mentioned above.

Subject (Semi) Magic Squares can be transformed to Order 10 Bordered Magic Squares with order 6 Magic Center Square, as illustrated below (right):

Composed (Semi) Magic Square
499 151 109 641 461 281 239 389 263 467
277 491 439 193 233 313 379 353 449 373
443 139 331 487 557 229 241 479 257 337
181 619 521 79 149 577 541 179 431 223
307 211 523 359 617 73 167 571 103 569
367 349 433 251 157 599 97 607 137 503
397 283 409 311 173 631 593 113 463 127
317 227 347 509 421 71 587 107 643 271
419 383 197 401 601 563 199 89 101 547
293 647 191 269 131 163 457 613 653 83
Bordered Magic Square
499 151 461 281 239 389 263 467 109 641
277 491 233 313 379 353 449 373 439 193
307 211 617 73 167 571 103 569 523 359
367 349 157 599 97 607 137 503 433 251
397 283 173 631 593 113 463 127 409 311
317 227 421 71 587 107 643 271 347 509
419 383 601 563 199 89 101 547 197 401
293 647 131 163 457 613 653 83 191 269
443 139 557 229 241 479 257 337 331 487
181 619 149 577 541 179 431 223 521 79


It should be noted that the reversed transformation is not necessarily possible because of the bottom-left / top-right Main Diagonal.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.18 Composed Magic Squares (10 x 10)
         Order 5 Semi Magic Sub Squares

Order 10 (Semi) Magic Squares might be composed of order 5 (Semi) Magic Sub Squares when the Magic Sum s10 is a multiple of 2.

An example is shown below for the consecutive prime numbers {131 ... 739} with the related Magic Sums s10 = 4222 and s5 = 2111.

Composed Semi Magic Square
167 179 317 709 739
181 163 389 677 701
311 359 601 439 401
719 683 421 149 139
733 727 383 137 131
193 199 367 661 691
239 241 337 641 653
347 397 463 461 443
659 631 457 191 173
673 643 487 157 151
263 229 373 599 647
353 293 281 571 613
269 409 499 503 431
607 563 491 227 223
619 617 467 211 197
541 307 251 419 593
349 257 379 557 569
331 547 523 277 433
313 479 449 587 283
577 521 509 271 233
Composed Simple Magic Square
167 739 179 317 709
181 701 163 389 677
311 401 359 601 439
719 139 683 421 149
733 131 727 383 137
193 661 199 367 691
239 641 241 337 653
347 461 397 463 443
659 191 631 457 173
673 157 643 487 151
373 647 229 599 263
281 613 293 571 353
499 431 409 503 269
491 223 563 227 607
467 197 617 211 619
541 419 307 593 251
349 557 257 569 379
331 277 547 433 523
313 587 479 283 449
577 271 521 233 509

The square left is a Semi Magic Square composed of Semi Magic Sub Squares. The Simple Magic Square right - also composed of Semi Magic Sub Squsres - is obtained by row and column permutations within the sub squares.

The Composed Simple Magic Square (right) corresponds with 4 * (5!)4 = 829.440.000 squares for the applied diagonal elements (highlighted).

Order 10 Simple Magic Squares composed of (Semi) Magic Sub Squares can be transformed into Four Way V type ZigZag Magic Squares of order 10 as illustrated below:

Composed Simple Magic Square
167 739 179 317 709 193 661 199 367 691
181 701 163 389 677 239 641 241 337 653
311 401 359 601 439 347 461 397 463 443
719 139 683 421 149 659 191 631 457 173
733 131 727 383 137 673 157 643 487 151
373 647 229 599 263 541 419 307 593 251
281 613 293 571 353 349 557 257 569 379
499 431 409 503 269 331 277 547 433 523
491 223 563 227 607 313 587 479 283 449
467 197 617 211 619 577 271 521 233 509
Four Way V Type ZigZag Magic Square
167 193 739 661 179 199 317 367 709 691
373 541 647 419 229 307 599 593 263 251
181 239 701 641 163 241 389 337 677 653
281 349 613 557 293 257 571 569 353 379
311 347 401 461 359 397 601 463 439 443
499 331 431 277 409 547 503 433 269 523
719 659 139 191 683 631 421 457 149 173
491 313 223 587 563 479 227 283 607 449
733 673 131 157 727 643 383 487 137 151
467 577 197 271 617 521 211 233 619 509

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.19 Bordered Magic Squares (10 x 10)
         Order 8 Simple Magic Sub Squares

The consecutive prime numbers {71 ... 653} - with the related Magic Sum s10 = 3500 - contain 18 regular pairs (pair sum = 700), which enables the construction of Bordered Magic Squares as illustrated by following examples:

Concentric Border
599 461 419 317 257 197 113 269 251 617
191 607 619 97 293 367 401 139 277 509
353 359 79 433 313 457 271 491 397 347
107 223 631 227 193 487 229 157 653 593
179 211 71 643 601 89 499 613 73 521
563 337 283 163 523 571 557 199 167 137
569 263 641 439 241 331 127 181 577 131
389 421 373 151 173 349 307 479 547 311
467 379 103 647 463 149 409 541 109 233
83 239 281 383 443 503 587 431 449 101
Eccentric Border
599 617 461 419 317 257 197 113 269 251
83 101 239 281 383 443 503 587 431 449
191 509 227 631 487 223 653 193 157 229
353 347 433 79 457 359 397 313 491 271
107 593 163 283 571 337 167 523 199 557
179 521 97 619 367 607 277 293 139 401
563 137 647 103 149 379 109 463 541 409
569 131 643 71 89 211 73 601 613 499
389 311 151 373 349 421 547 173 479 307
467 233 439 641 331 263 577 241 181 127

The Order 8 Simple Magic Sub Square (s8 = 2800), constructed with the Generator Principle as applied in previous sections, corresponds with 8 * 24/2 * (4!) = 8 * 192 = 1536 Sub Squares.

The Concentric Border (left) corresponds with 8 * (8!)2 = 13.005.619.200 borders for the applied corner pairs.

The Eccentric Border (right) corresponds with 2 * (6!)2 = 1.036.800 borders for the applied (aspect of the) Sub Square and corner pairs.

14.13.20 Summary

The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:

Order

Main Characteristics

Subroutine

Results

-

-

-

-

10

Consecutive Primes, Simple Magic

CnstrSqrs10

Attachment 14.13.9

3

Square Inlays, Cons. Primes (41 ... 613)

Prime1311

Attachment 14.13.11

Square Inlays, Cons. Primes (23 ... 593)

Attachment 14.13.16

4

Square Inlays, Cons. Primes (23 ... 593)

Prime1312

Attachment 14.13.12

5

Square Inlays, Cons. Primes (23 ... 593)

La Hirian

Attachment 14.13.13

Prime1313

Attachment 14.13.15

6

Square Inlays, Cons. Primes (23 ... 593)

Prime1314

Attachment 14.13.14

-

-

-

-

Following sections will describe how Order 11 Prime Number Magic Squares with Consecutive Primes can be found with comparable routines as described in previous sections.


Vorige Pagina Volgende Pagina Index About the Author