Vorige Pagina About the Author

' Generates Prime Number Concentric Magic Squares of order 9 with Diamond Inlay

' Tested with Office 365 under Windows 10

Sub ConcDia9()

    Dim a1(2448), a(81), b1(43300), b(43300), c(81)

y = MsgBox("Locked", vbCritical, "Routine ConcDia9")
End

    n5 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1

    Sheets("Klad1").Select
    
    t1 = Timer

For j101 = 2 To 22

'   Read Brdr7/Diamond Combination

    For i1 = 1 To 81
        a(i1) = Sheets("BrdrLns7").Cells(j101, i1):
        If a(i1) <> 0 Then b(a(i1)) = a(i1)
    Next i1
    j100 = Sheets("BrdrLns7").Cells(j101, 83):
    
'   Define variables

    p2 = Sheets("Pairs7").Cells(j100, 1).Value      'Pair Sum
    s1 = 9 * p2 / 2
    nVar1 = Sheets("Pairs7").Cells(j100, 9).Value
    
    For i1 = 1 To nVar1
        a1(i1) = Sheets("Pairs7").Cells(j100, 9 + i1).Value
    Next i1

    m1 = 1: m2 = nVar1
    If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
    
    Erase b1

    For i1 = m1 To m2
        b1(a1(i1)) = a1(i1)
    Next i1

'   Determine Border(s)

    n10 = 0
    For j81 = m1 To m2                                                     'a(81)
    If b(a1(j81)) = 0 Then b(a1(j81)) = a1(j81): c(81) = a1(j81) Else GoTo 810
    a(81) = a1(j81)
    
    a(1) = p2 - a(81): If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
    
    For j80 = j81 + 1 To m2                                                'a(80)
    If b(a1(j80)) = 0 Then b(a1(j80)) = a1(j80): c(80) = a1(j80) Else GoTo 800
    a(80) = a1(j80)
   
    a(8) = p2 - a(80): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
    
    For j79 = j80 + 1 To m2                                                'a(79)
    If b(a1(j79)) = 0 Then b(a1(j79)) = a1(j79): c(79) = a1(j79) Else GoTo 790
    a(79) = a1(j79)
   
    a(7) = p2 - a(79): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
   
    For j78 = j79 + 1 To m2                                                'a(78)
    If b(a1(j78)) = 0 Then b(a1(j78)) = a1(j78): c(78) = a1(j78) Else GoTo 780
    a(78) = a1(j78)
   
    a(6) = p2 - a(78): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
   
    
    For j76 = m2 To m1 Step -1                                             'a(76)
    If b(a1(j76)) = 0 Then b(a1(j76)) = a1(j76): c(76) = a1(j76) Else GoTo 760
    a(76) = a1(j76)
    
    a(4) = p2 - a(76): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    For j75 = j76 - 1 To m1 Step -1                                        'a(75)
    If b(a1(j75)) = 0 Then b(a1(j75)) = a1(j75): c(75) = a1(j75) Else GoTo 750
    a(75) = a1(j75)
   
    a(3) = p2 - a(75): If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
    For j74 = m1 To m2                                                     'a(74)
    If b(a1(j74)) = 0 Then b(a1(j74)) = a1(j74): c(74) = a1(j74) Else GoTo 740
    a(74) = a1(j74)
   
    a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81)
    If a(73) < a1(m1) Or a(73) > a1(m2) Then GoTo 730
    If b1(a(73)) = 0 Then GoTo 730
    If b(a(73)) = 0 Then b(a(73)) = a(73): c(73) = a(73) Else GoTo 730
    
    a(9) = p2 - a(73): If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
    a(2) = p2 - a(74): If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    
    For j72 = m1 To m2                                                     'a(72)
    If b(a1(j72)) = 0 Then b(a1(j72)) = a1(j72): c(72) = a1(j72) Else GoTo 720
    a(72) = a1(j72)
    
    a(64) = p2 - a(72): If b(a(64)) = 0 Then b(a(64)) = a(64): c(64) = a(64) Else GoTo 640
    
    For j63 = j72 + 1 To m2                                                'a(63)
    If b(a1(j63)) = 0 Then b(a1(j63)) = a1(j63): c(63) = a1(j63) Else GoTo 630
    a(63) = a1(j63)
    
    a(55) = p2 - a(63): If b(a(55)) = 0 Then b(a(55)) = a(55): c(55) = a(55) Else GoTo 550
    
    For j54 = j63 + 1 To m2                                                'a(54)
    If b(a1(j54)) = 0 Then b(a1(j54)) = a1(j54): c(54) = a1(j54) Else GoTo 540
    a(54) = a1(j54)
    
    a(46) = p2 - a(54): If b(a(46)) = 0 Then b(a(46)) = a(46): c(46) = a(46) Else GoTo 460

    For j36 = m1 To m2                                                     'a(36)
    If b(a1(j36)) = 0 Then b(a1(j36)) = a1(j36): c(36) = a1(j36) Else GoTo 360
    a(36) = a1(j36)
    
    a(28) = p2 - a(36): If b(a(28)) = 0 Then b(a(28)) = a(28): c(28) = a(28) Else GoTo 280
    
    For j27 = m1 To m2                                                     'a(27)
    If b(a1(j27)) = 0 Then b(a1(j27)) = a1(j27): c(27) = a1(j27) Else GoTo 270
    a(27) = a1(j27)
    
    a(19) = p2 - a(27): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 190
    
    a(18) = 7 * p2 / 2 - a(27) - a(36) - a(45) - a(54) - a(63) - a(72) + a(73) - a(81)
    If a(18) < a1(m1) Or a(18) > a1(m2) Then GoTo 180
    If b1(a(18)) = 0 Then GoTo 180
    If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 180
    
    a(10) = p2 - a(18): If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100
    
'                               Exclude solutions with identical numbers

                                GoSub 1800: If fl1 = 0 Then GoTo 5
    
                                n9 = n9 + 1
                                GoSub 2650              'Print results (squares)
 '                              GoSub 2645              'Print results (selected numbers)

                                Erase b, c: GoTo 1000   'Print only first square

5
        b(c(10)) = 0: c(10) = 0
100     b(c(18)) = 0: c(18) = 0
180     b(c(19)) = 0: c(19) = 0
190     b(c(27)) = 0: c(27) = 0
270     Next j27
        
        b(c(28)) = 0: c(28) = 0
280     b(c(36)) = 0: c(36) = 0
360     Next j36
        
        b(c(46)) = 0: c(46) = 0
460     b(c(54)) = 0: c(54) = 0
540     Next j54
        
        b(c(55)) = 0: c(55) = 0
550     b(c(63)) = 0: c(63) = 0
630     Next j63
        
        b(c(64)) = 0: c(64) = 0
640     b(c(72)) = 0: c(72) = 0
720     Next j72
    
        b(c(2)) = 0: c(2) = 0
20      b(c(9)) = 0: c(9) = 0
90      b(c(73)) = 0: c(73) = 0
730     b(c(74)) = 0: c(74) = 0
740     Next j74
        b(c(3)) = 0: c(3) = 0
30      b(c(75)) = 0: c(75) = 0
750     Next j75
        b(c(4)) = 0: c(4) = 0
40      b(c(76)) = 0: c(76) = 0
760     Next j76

        b(c(6)) = 0: c(6) = 0
60      b(c(78)) = 0: c(78) = 0
780     Next j78
        b(c(7)) = 0: c(7) = 0
70      b(c(79)) = 0: c(79) = 0
790     Next j79
        b(c(8)) = 0: c(8) = 0
80      b(c(80)) = 0: c(80) = 0
800     Next j80
        b(c(1)) = 0: c(1) = 0
10      b(c(81)) = 0: c(81) = 0
810     Next j81
    
     n10 = 0: Erase b, c
1000 Next j101

    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
    y = MsgBox(t10, 0, "Routine ConcDia9")

End
     
'    Print results (selected numbers)

2645 For i1 = 1 To 81
         Cells(n9, i1).Value = a(i1)
     Next i1
    
     Return

'    Print results (squares)

2650 n5 = n5 + 1
     If n5 = 4 Then
         n5 = 1: k1 = k1 + 10: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 10
     End If

     Cells(1, 1).Value = n9
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "Mc9 = " + CStr(s1)
    
     i3 = 0
     For i1 = 1 To 9
         For i2 = 1 To 9
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a(i3)
         Next i2
     Next i1
    
     Return
     
'    Exclude solutions with identical numbers

1800 fl1 = 1
     For j1 = 1 To 81
        a2 = a(j1): If a2 = 0 Then GoTo 1810
        For j2 = (1 + j1) To 81
            If a2 = a(j2) Then fl1 = 0: Return
        Next j2
1810 Next j1
     Return
  
End Sub

Vorige Pagina About the Author