Office Applications and Entertainment, Magic Squares | ||
|
|
Index | About the Author |
|
20.0 Special Magic Squares, Prime Numbers, Diamond Inlays
This section describes how Prime Number Magic Squares with Diamond Inlays can be constructed for miscellaneous orders.
20.1.1 Concentric Magic Squares (5 x 5) The defining equations for fifth order Concentric Magic Squares with third order Diamond Inlays are: a(21) = s1 - a(22) - a(23) - a(24) - a(25) a(18) = -0.2 * s1 + 2 * a(23) a(17) = 0.8 * s1 - a(19) - 2 * a(23) a(15) = 0.6 * s1 - a(19) - a(23) a(14) = s1 - 2 * a(19) - 2 * a(23) a(10) = s1 + a(19) - a(20) - a(22) - a(24) - 2 * a(25) a(13) = 0.2 * s1
with a(19), a(20), a(22) ... a(25) the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.
Mc5 = 7265
Attachment 20.1.1 shows one Prime Number
Concentric Magic Square with Diamond Inlay for miscellaneous Magic Sums.
20.1.2 Concentric Magic Squares (7 x 7)
It can be proven that order 7 (Prime Number) Concentric Magic Squares with 4 x 4 Diamond Inlay can’t exist for distinct integers.
20.1.3 Concentric Magic Squares (9 x 9) The defining equations for 5 x 5 Diamond Inlays suitable for order 9 Concentric Magic Squares are a(58) = - s1/9 - a(59) - a(60) + a(67) + a(69) + 2 * a(77) a(57) = 6*s1/9 - a(61) - a(67) - a(69) - 2 * a(77) a(50) = -3*s1/9 + 2 * a(59) + a(67) + a(69) a(49) = 6*s1/9 - a(51) - 2 * a(59) - a(67) - a(69) a(45) = 5*s1/9 - a(53) - a(61) - a(69) - a(77) a(43) = 5*s1/9 - a(51) - a(53) - a(59) - a(69) a(42) = 7*s1/9 - 2 * a(51) - 2 * a(59) - a(67) - a(69) a(35) = a(53) - a(67) + a(69) a(34) = 4*s1/9 + a(51) - a(52) + a(53) + a(59) - 2 * a(61) - a(67) - 2 * a(77) a(41) = s1/9
with a(44), a(51), a(52), a(53), a(59), a(60), a(61), a(67), a(68), a(69), a(77) the independent variables, Mc5 = 6865 Prime Number Concentric Magic Squares with order 5 Diamond Inlays can be constructed as follows:
Attachment 20.3.1 shows miscellaneous suitable order 5 Diamond Inlays
(ref. Diamond5).
20.1.4 Concentric Magic Squares (11 x 11) The defining equations for a 6 x 6 Diamond Inlay suitable for order 11 Concentric Magic Squares are
a(92) = 6*s1/11 - a(96) - a(104) - a(106) - 2 * a(116)
a(91) = s1/11 - a(93) - a(94) - a(95) - a(97) + a(104) + a(106) + 2 * a(116)
a(82) = 6*s1/11 - a(84) - 2 * a(94) - a(104) - a(106)
a(81) = - s1/11 - a(83) - a(85) + 2 * a(94) + a(104) + a(106)
a(73) = - s1/11 + 0.5 * a(74) + 0.5 * a(84) + 0.5 * a(86) + 0.5 * a(96)
a(72) = -3*s1/11 + a(94) + a(104) + a(106) + a(116)
a(71) = 7*s1/11 - 0.5 * a(74) - 0.5 * a(84) - 0.5 * a(86) - a(94) - 0.5 * a(96) - a(104) - a(106) - a(116)
a(66) = 6*s1/11 - a(76) - a(86) - a(96) - a(106) - a(116)
a(63) = p2 + a(64) - a(74) + a(76) - a(83) - a(84) - 2 * a(85) + a(94) + a(106)
a(62) = 9*s1/11 - a(74) - a(84) - a(86) - a(94) - a(96) - a(104) - a(106) - a(116)
a(54) = 6*s1/11 - a(64) - a(74) - a(84) - a(94) - a(104)
a(53) = 17*s1/11 - 2 * a(64) - a(74) - a(75) - a(76) - a(84) - 2*a(86) + a(91) +
- a(94) - 2*a(96) - a(97) - a(104) - 2*a(106) - 2*a(116)
a(52) = - a(64) - a(76) + a(84) + a(94) + a(104)
a(42) = -12*s1/11 + a(64) + a(74) + a(76) + a(84) + a(86) + a(94) + 2 * a(96) + a(104) + 2 * a(106) + 2 * a(116)
a(61) = s1/11
with the independent variables:
Mc6 = 15342 Prime Number Concentric Magic Squares with order 6 Diamond Inlays can be constructed as follows:
Attachment 20.4.1 shows miscellaneous suitable order 6 Diamond Inlays and
the four corner points of the order 7 concentric squares
(ref. Diamond6).
20.1.5 Concentric Magic Squares (13 x 13) The defining equations for a 7 x 7 Diamond Inlay suitable for order 13 Concentric Magic Squares are
a(121) = 8 * s1/13 - a(127) - a(135) - a(139) - a(149) - a(151) - 2 * a(163)
a(122) = - s1/13 - a(123) - a(124) - a(125) - a(126) + a(135) + a(139) + a(149) + a(151) + 2 * a(163)
a(109) = 8 * s1/13 - a(113) - a(123) - a(125) - 2 * a(137) - a(149) - a(151)
a(110) = -3 * s1/13 - a(111) - a(112) + a(123) + a(125) + 2 * a(137) + a(149) + a(151)
a( 98) = 3 * s1/13 - a(109) + 2 * a(111) - a(113) + a(135) - 2 * a(137) + a(139) - a(149) - a(151)
a( 91) = 7 * s1/13 - a(103) - a(115) - a(127) - a(139) - a(151) - a(163)
a( 97) = 8 * s1/13 - a( 99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 87) = 15 * s1/13 - a( 99) - a(101) - a(111) - a(115) - a(121) - a(125) - a(127) - a(135) - 2 * a(139) +
- a(149) - a(151) - 2*a(163)
a( 86) = 9 * s1/13 - 2 * a(99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 74) = 4 * s1/13 + a( 99) - a(100) + a(101) + a(111) - 2 * a(113) + a(115) - a(123) - 2 * a(137) +
+ a(139) - a(149) - a(151)
a( 77) = 7 * s1/13 - a( 89) - a(101) - a(113) - a(125) - a(137) - a(149)
a( 75) = 7 * s1/13 - a( 89) - a(103) - a(113) - a(123) - a(137) - a(151)
a( 63) = -8 * s1/13 + a( 89) + a(101) + a(103) + a(113) + a(115) - a(122) - a(123) - a(124) - a(126) +
+ a(137) + 2 * a(139) + a(149) + 2 * a(151) + 2*a(163)
a( 62) = 12 * s1/13 - a( 75) - a( 88) - a(101) - a(114) - a(122) - a(123) - a(124) - a(125) - a(126) - 2*a(127)
With the independent variables:
Mc7 = 59759 Prime Number Concentric Magic Squares with order 7 Diamond Inlays can be constructed as follows:
Attachment 18.7.7 shows miscellaneous suitable order 7 Diamond Inlays
(ref. Diamond7).
20.2.1 Associated Magic Squares (5 x 5) The defining equations for fifth order Associated Magic Squares with third order Diamond Inlays are: a(21) = s1 - a(22) - a(23) - a(24) - a(25) a(18) = 0.8 * s1 + a(19) - 2 * a(20) - a(22) + 2 * a(23) - a(24) - 2 * a(25) a(17) = 0.8 * s1 - a(19) - 2 * a(23) a(16) = -0.6 * s1 - a(19) + a(20) + a(22) + a(24) + 2 * a(25) a(15) = 0.6 * s1 - a(19) - a(23) a(14) = s1 - 2 * a(19) + a(22) - 2 * a(23) - a(24) a(13) = 0.2 * s1
with
a(19), a(20), a(22) ... a(25)
the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.
Mc5 = 1255
Attachment 20.5.1 shows one Prime Number
Associated Magic Square with Diamond Inlay for miscellaneous Magic Sums.
20.2.2 Associated Magic Squares (7 x 7) The defining equations for Order 7 Associated Magic Squares with Order 3 and 4 Diamond Inlays are:
a(46) = 4 * s1/7 - a(40) - a(34) - a(28)
a(45) = s1/7 + a(47) - 2 * a(27) + a(26) - a(20) + a(46) + a(40) - a(28)
a(43) = s1 - a(44) - a(45) - a(47) - a(48) - a(49) - a(46)
a(39) = 3 * s1/7 - a(33) - a(27)
a(38) = a(20) - a(46) + a(28)
a(37) = - 3 * s1/7 + a(41) - a(44) + a(48) + a(27) + a(20) + a(34)
a(36) = s1 - 2 * a(41) - a(42) + a(44) - a(48) + a(33) - 2 * a(20) + a(46) - a(40) - a(34) - a(28)
a(35) = (17 * s1/7 - 2 * a(41) - 2*a(42) - 2*a(47) - 2 * a(48) - 2 * a(49) - a(33) + 2 * a(20) +
- 2 * a(46) - 2 * a(40) - 2 * a(34)) / 2
a(32) = 4 * s1/7 - a(26) - 2 * a(20) + a(46) - a(28)
a(29) = 3 * s1/7 - a(35) - 2 * a(33) - 2 * a(27) + a(26) + 3 * a(20) - a(46) - a(34) + a(28)
a(26) = 4 * s1/7 - a(20) - a(34) - a(28)
a(19) = 4 * s1/7 - a(33) - 2 * a(27)
a(25) = s1/7
with the independent variables
Mc7 = 4781
Attachment 20.6.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
20.2.3 Associated Magic Squares (9 x 9) Order 9 Associated Magic Squares with Order 4 and 5 Diamond Inlays can be constructed as follows:
It is convenient to split the two bottom rows and right columns into parts summing to s3 = s9/3 and s6 = 2*s9/3, which results in following border equations:
a9(79) = s3 - a9(80) - a9(81)
a9(70) = s3 - a9(71) - a9(72)
a9(63) = s3 - a9(72) - a9(81)
a9(62) = s3 - a9(71) - a9(80)
a9(76) = s9 - a9( 4) - a9(13) - a9(22) - a9(31) - a9(40) - a9(49) - a9(58) - a9(67)
a9(75) = s9 - a9( 3) - a9(12) - a9(21) - a9(30) - a9(39) - a9(48) - a9(57) - a9(66)
a9(55) = s9 - a9(56) - a9(57) - a9(58) - a9(59) - a9(60) - a9(61) - a9(62) - a9(63)
a9(64) = s9 - a9(65) - a9(66) - a9(67) - a9(68) - a9(69) - a9(70) - a9(71) - a9(72)
a9(74) = s9 - a9( 2) - a9(11) - a9(20) - a9(29) - a9(38) - a9(47) - a9(56) - a9(65)
a9(73) = s9 - a9(74) - a9(75) - a9(76) - a9(77) - a9(78) - a9(79) - a9(80) - a9(81)
a9(54) =(7 * s9 - 4 * a9(55) - 5 * a9(56) - 8 * a9(64) - 9 * a9(65) - 10 * a9(66) - 10 * a9(70) +
- a9(74) - 2 * a9(75) - 3 * a9(76) + 12 * a9(77) - 5 * a9(78) - 10 * a9(79)) / 8
a9(46) = s9 - a9(47) - a9(48) - a9(49) - a9(50) - a9(51) - a9(52) - a9(53) - a9(54)
with the independent border variables
Mc9 = 28719
Attachment 20.7.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
20.2.4 Associated Magic Squares (11 x 11) Order 11 Associated Magic Squares with Order 5 and 6 Diamond Inlays can be constructed as follows:
It is convenient to split the bottom row and right column into parts summing to s4 = 4*s1/11 and s7 = 7*s1/11, which results in following border equations:
a(115) = s1 - a( 5) - a( 16) - a( 27) - a( 38) - a( 49) - a( 60) - a( 71) - a( 82) - a( 93) - a(104)
a( 55) = s1 - a( 45) - a( 46) - a( 47) - a( 48) - a( 49) - a( 50) - a( 51) - a( 52) - a( 53) - a( 54)
a(118) = s4 - a(119) - a(120) - a(121)
a(103) = s1 - a( 4) - a( 15) - a( 26) - a( 37) - a( 48) - a( 59) - a( 70) - a( 81) - a( 92) - a(114)
a( 88) = s4 - a( 99) - a(110) - a(121)
a( 87) = s1 - a( 78) - a( 79) - a( 80) - a( 81) - a( 82) - a( 83) - a( 84) - a( 85) - a( 86) - a( 88)
a(113) = s1 - a(111) - a(112) - a(114) - a(115) - a(116) - a(117) - a(118) - a(119) - a(120) - a(121)
a( 89) = s1 - a( 1) - a( 12) - a( 23) - a( 34) - a( 45) - a( 56) - a( 67) - a( 78) - a(100) - a(111)
a(101) = s1 - a(100) - a(102) - a(103) - a(104) - a(105) - a(106) - a(107) - a(108) - a(109) - a(110)
a( 90) = s1 - a( 2) - a( 13) - a( 24) - a( 35) - a( 46) - a( 57) - a( 68) - a( 79) - a(101) - a(112)
a( 97) =(2*s1/11 - a(9)- a( 20) + a( 23) + a( 24) + a( 26) + a( 27) + a( 28) + a( 29) + a( 30) + a( 32) +
+ a(33) - a(42) - a(53) - a(64) - a(75) - a(86) - a(108) - a(119)) / 2
a( 91) = s1 - a( 97) - a( 89) - a( 90) - a( 92) - a( 93) - a( 94) - a( 95) - a( 96) - a( 98) - a( 99)
with the independent border variables:
Mc11 = 36619
Attachment 20.8.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
20.2.5 Associated Magic Squares (13 x 13) Order 13 Associated Magic Squares with Order 6 and 7 Diamond Inlays can be constructed as follows:
It is convenient to split the two bottom rows and right columns into parts summing to s4 = 4*s1/13 and s9 = 9*s1/13, which results in following border equations:
a(162) = s1 - a( 6) - a( 19) - a( 32) - a( 45)-a( 58)-a( 71)-a( 84)-a( 97) - a(110) - a(123) - a(136) - a(149)
a(161) = s5 - a(162) - a(163) - a(164) - a(165)
a(148) = s1 - a( 5) - a( 18) - a( 31) - a( 44)-a( 57)-a( 70)-a( 83)-a( 96) - a(109) - a(122) - a(135) - a(161)
a( 78) = s1 - a( 66) - a( 67) - a( 68) - a( 69)-a( 70)-a( 71)-a( 72)-a( 73) - a( 74) - a( 75) - a( 76) - a( 77)
a(116) = s1 - a(105) - a(106) - a(107) - a(108)-a(109)-a(110)-a(111)-a(112) - a(113) - a(114) - a(115) - a(117)
a(166) = s4 - a(167) - a(168) - a(169)
a(130) = s4 - a(143) - a(156) - a(169)
a(153) = s4 - a(154) - a(155) - a(156)
a(129) = s4 - a(142) - a(155) - a(168)
a(160) = s4 - a(159) - a(158) - a(157)
a(118) = s1 - a( 1) - a( 14) - a( 27) - a( 40)-a( 53)-a( 66)-a( 79)-a( 92) - a(105) - a(131) - a(144) - a(157)
a(147) = s1 - a(144) - a(145) - a(146) - a(148)-a(149)-a(150)-a(151)-a(152) - a(153) - a(154) - a(155) - a(156)
a(119) = s1 - a( 2) - a( 15) - a( 28) - a( 41)-a( 54)-a( 67)-a( 80)-a( 93) - a(106) - a(132) - a(145) - a(158)
a( 50) = s1 - a( 40) - a( 41) - a( 42) - a( 43)-a( 44)-a( 45)-a( 46)-a( 47) - a( 48) - a( 49) - a( 51) - a( 52)
a(133) = s1 - a( 3) - a( 16) - a( 29) - a( 42)-a( 55)-a( 68)-a( 81)-a( 94) - a(107) - a(120) - a(146) - a(159)
a(140) =(p2 - a(10) - a(23) + a(27) + a(28) + a(29) + a(31) + a( 32) + a( 33) + a( 34) + a( 35) + a( 37) +
+ a(38) + a(39) - a(49) - a(62) - a(75) - a(88) - a(101) - a(114) - a(127) - a(153) - a(166)) / 2
a(134) = s1 - a(140) - a(131) - a(132) - a(133)-a(135)-a(136)-a(137)-a(138) - a(139) - a(141) - a(142) - a(143)
with the independent border variables:
Mc13 = 113711
It can be noticed that the order 7 Diamond Inlay of the square shown above contains an order 3 and an order 4 Diamond Inlay as well.
The obtained results regarding the miscellaneous Magic Squares with Diamond Inlays as deducted and discussed in previous sections are summarized in following table: |
Order
Characteristics
Subroutine
Results
5
Concentric, Diamond Inlay Order 3
9
Concentric, Diamond Inlay Order 5
11
Concentric, Diamond Inlay Order 6
13
Concentric, Diamond Inlay Order 7
5
Associated, Diamond Inlay Order 3
7
Associated, Diamond Inlays Order 3 and 4
9
Associated, Diamond Inlays Order 4 and 5
11
Associated, Diamond Inlays Order 5 and 6
13
Associated, Diamond Inlays Order 6 and 7
|
Following sections will describe and illustrate how Prime Number (Pan) Magic Squares can be constructed based on the sum of suitable selected Latin Squares.
|
|
|
Index | About the Author |