Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

20.0   Special Magic Squares, Prime Numbers, Diamond Inlays

This section describes how Prime Number Magic Squares with Diamond Inlays can be constructed for miscellaneous orders.

20.1.1 Concentric Magic Squares (5 x 5)
       Diamond Inlay Order 3

The defining equations for fifth order Concentric Magic Squares with third order Diamond Inlays are:

a(21) =        s1 - a(22) - a(23) - a(24) - a(25)
a(18) = -0.2 * s1 + 2 * a(23)
a(17) =  0.8 * s1 - a(19) - 2 * a(23)
a(15) =  0.6 * s1 - a(19) - a(23)
a(14) =        s1 - 2 * a(19) - 2 * a(23)
a(10) =        s1 + a(19) - a(20) - a(22) - a(24) - 2 * a(25)
a(13) =  0.2 * s1

a(1) = p2 - a(25)
a(2) = p2 - a(22)
a(3) = p2 - a(23)

a(4) = p2 - a(24)
a(5) = p2 - a(21)
a(6) = p2 - a(10)

a(7) = p2 - a(19)
a(8) = p2 - a(18)
a(9) = p2 - a(17)

a(11) = p2 - a(15)
a(12) = p2 - a(14)
a(16) = p2 - a(20)

with a(19), a(20), a(22) ... a(25) the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.

The equations shown above can be incorporated in a guessing routine to generate subject Concentric Magic Squares (ref. ConcDia5), of which an example is shown below:

Mc5 = 7265
2887 619 823 2833 103
109 2383 193 1783 2797
1153 853 1453 2053 1753
313 1123 2713 523 2593
2803 2287 2083 73 19

Attachment 20.1.1 shows one Prime Number Concentric Magic Square with Diamond Inlay for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.1.2 Concentric Magic Squares (7 x 7)
       Diamond Inlay Order 4

It can be proven that order 7 (Prime Number) Concentric Magic Squares with 4 x 4 Diamond Inlay can’t exist for distinct integers.

20.1.3 Concentric Magic Squares (9 x 9)
       Diamond Inlay Order 5

The defining equations for 5 x 5 Diamond Inlays suitable for order 9 Concentric Magic Squares are

a(58) = -  s1/9 - a(59) - a(60) + a(67) + a(69) + 2 * a(77)
a(57) =  6*s1/9 - a(61) - a(67) - a(69) - 2 * a(77)
a(50) = -3*s1/9 + 2 * a(59) + a(67) + a(69)
a(49) =  6*s1/9 - a(51) - 2 * a(59) - a(67) - a(69)
a(45) =  5*s1/9 - a(53) - a(61) - a(69) - a(77)
a(43) =  5*s1/9 - a(51) - a(53) - a(59) - a(69)
a(42) =  7*s1/9 - 2 * a(51) - 2 * a(59) - a(67) - a(69)
a(35) =           a(53) - a(67) + a(69)
a(34) =  4*s1/9 + a(51) - a(52) + a(53) + a(59) - 2 * a(61) - a(67) - 2 * a(77)
a(41) =    s1/9

a( 5) = p2 - a(77)
a(13) = p2 - a(67)
a(14) = p2 - a(68)
a(15) = p2 - a(69)
a(21) = p2 - a(61)

a(22) = p2 - a(58)
a(23) = p2 - a(59)
a(24) = p2 - a(60)
a(25) = p2 - a(57)
a(29) = p2 - a(35)

a(30) = p2 - a(34)
a(31) = p2 - a(51)
a(32) = p2 - a(50)
a(33) = p2 - a(49)
a(37) = p2 - a(45)

a(38) = p2 - a(44)
a(39) = p2 - a(43)
a(40) = p2 - a(42)
a(47) = p2 - a(53)
a(48) = p2 - a(52)

with a(44), a(51), a(52), a(53), a(59), a(60), a(61), a(67), a(68), a(69), a(77) the independent variables,
s1 the Magic Sum and p2 = 2 * s1 / 9.

The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:

Mc5 = 6865
o o o o 5 o o o o
o o o 2693 47 2729 o o o
o o 2087 773 677 2609 719 o o
o 1223 269 1109 2657 353 2477 1523 o
857 2687 1163 617 1373 2129 1583 59 1889
o 1187 1319 2393 89 1637 1427 1559 o
o o 2027 1973 2069 137 659 o o
o o o 53 2699 17 o o o
o o o o 2741 o o o o

Prime Number Concentric Magic Squares with order 5 Diamond Inlays can be constructed as follows:

  • Generate order 5 Diamond Inlays;
  • Complete the order 7 border (4 x 3 corner numbers), based on a selection from the order 5 Diamond Inlays;
  • Complete the order 9 border, based on a selection from the order 7 border / diamond combinations.

Attachment 20.3.1 shows miscellaneous suitable order 5 Diamond Inlays (ref. Diamond5).

Attachment 20.3.2 shows the first occurring order 7 border / diamond combination with 4 x 3 corner numbers, for each of the order 5 Diamond Inlays shown in Attachment 20.3.1 (ref. Priem7e).

Attachment Attachment 20.3.3 shows the first occurring order 9 Concentric Magic Squares for each of the order 7 border / diamond combinations shown in Attachment 20.3.2 (ref. ConcDia9).

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

Note:
It can be proven that order 9 (Prime Number) Concentric Magic Squares with both 4 x 4 and 5 x 5 Diamond Inlays can’t exist for distinct integers.

20.1.4 Concentric Magic Squares (11 x 11)
       Diamond Inlay Order 6

The defining equations for a 6 x 6 Diamond Inlay suitable for order 11 Concentric Magic Squares are

a(92) =   6*s1/11 - a(96) - a(104) - a(106) - 2 * a(116)
a(91) =     s1/11 - a(93) - a(94) - a(95) - a(97) + a(104) + a(106) + 2 * a(116)
a(82) =   6*s1/11 - a(84) - 2 * a(94) - a(104) - a(106)
a(81) =  -  s1/11 - a(83) - a(85) + 2 * a(94) + a(104) + a(106)
a(73) =  -  s1/11 + 0.5 * a(74) + 0.5 * a(84) + 0.5 * a(86) + 0.5 * a(96)
a(72) =  -3*s1/11 + a(94) + a(104) + a(106) + a(116)
a(71) =   7*s1/11 - 0.5 * a(74) - 0.5 * a(84) - 0.5 * a(86) - a(94) - 0.5 * a(96) - a(104) - a(106) - a(116)
a(66) =   6*s1/11 - a(76) - a(86) - a(96) - a(106) - a(116)
a(63) =     p2    + a(64) - a(74) + a(76) - a(83) - a(84) - 2 * a(85) + a(94) + a(106)
a(62) =   9*s1/11 - a(74) - a(84) - a(86) - a(94) - a(96) - a(104) - a(106) - a(116)
a(54) =   6*s1/11 - a(64) - a(74) - a(84) - a(94) - a(104)
a(53) =  17*s1/11 - 2 * a(64) - a(74) - a(75) - a(76) - a(84) - 2*a(86) + a(91) +
                                                      - a(94) - 2*a(96) - a(97) - a(104) - 2*a(106) - 2*a(116)
a(52) =           - a(64) - a(76) + a(84) + a(94) + a(104)
a(42) = -12*s1/11 + a(64) + a(74) + a(76) + a(84) + a(86) + a(94) + 2 * a(96) + a(104) + 2 * a(106) + 2 * a(116)
a(61) =     s1/11

a( 6) = p2 - a(116)
a(16) = p2 - a(104)
a(17) = p2 - a(105)
a(18) = p2 - a(106)
a(25) = p2 - a( 97)
a(26) = p2 - a( 92)
a(27) = p2 - a( 93)
a(28) = p2 - a( 94)

a(29) = p2 - a(95)
a(30) = p2 - a(96)
a(31) = p2 - a(91)
a(36) = p2 - a(42)
a(37) = p2 - a(85)
a(38) = p2 - a(82)
a(39) = p2 - a(83)
a(40) = p2 - a(84)

a(41) = p2 - a(81)
a(46) = p2 - a(54)
a(47) = p2 - a(53)
a(48) = p2 - a(52)
a(49) = p2 - a(73)
a(50) = p2 - a(72)
a(51) = p2 - a(71)
a(56) = p2 - a(66)

a(57) = p2 - a(65)
a(58) = p2 - a(64)
a(59) = p2 - a(63)
a(60) = p2 - a(62)
a(68) = p2 - a(76)
a(69) = p2 - a(75)
a(70) = p2 - a(74)
a(80) = p2 - a(86)

with the independent variables:

       a(i) for i = 64, 65, 74, 75, 76, 83 ... 86, 93 ... 97, 104, 105, 106, 116

       s1 the Magic Sum and p2 = 2 * s1 / 11.

The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:

Mc6 = 15342
o o o o o 7 o o o o o
o o o o 5011 37 5101 o o o o
o o 2053 283 4957 523 4987 4933 163 o o
o o 3733 4651 1021 1567 3163 2383 1381 o o
o 2281 457 3943 1933 2971 2767 1171 4657 2833 o
4027 4801 3691 787 3391 2557 1723 4327 1423 313 1087
o 1063 2803 673 2347 2143 3181 4441 2311 4051 o
o o 211 2731 4093 3547 1951 463 4903 o o
o o 4951 4831 157 4591 127 181 3061 o o
o o o o 103 5077 13 o o o o
o o o o o 5107 o o o o o

Prime Number Concentric Magic Squares with order 6 Diamond Inlays can be constructed as follows:

  • Generate order 6 Diamond Inlays,
    together with the four corner points of the related order 7 concentric square;
  • Complete the order 9 border (4 x 5 corner numbers),
    based on a selection from the Order 7 concentric square / diamond combinations;
  • Complete the order 11 border, based on a selection from the order 9 concentric square / diamond combinations.

Attachment 20.4.1 shows miscellaneous suitable order 6 Diamond Inlays and the four corner points of the order 7 concentric squares (ref. Diamond6).

Attachment 20.4.2 shows the first occurring order 9 border / diamond combination with 4 x 5 corner numbers, for each of the order 6 Diamond Inlays shown in Attachment 20.4.1 (ref. Priem9e).

Attachment Attachment 20.4.3 shows the first occurring order 11 Concentric Magic Squares for each of the order 9 border / diamond combinations shown in Attachment 20.4.2 (ref. ConcDia11).

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.1.5 Concentric Magic Squares (13 x 13)
       Diamond Inlay Order 7

The defining equations for a 7 x 7 Diamond Inlay suitable for order 13 Concentric Magic Squares are

a(121) =  8 * s1/13 - a(127) - a(135) - a(139) - a(149) - a(151) - 2 * a(163)
a(122) = -    s1/13 - a(123) - a(124) - a(125) - a(126) + a(135) + a(139) + a(149) + a(151) + 2 * a(163)
a(109) =  8 * s1/13 - a(113) - a(123) - a(125) - 2 * a(137) - a(149) - a(151)
a(110) = -3 * s1/13 - a(111) - a(112) + a(123) + a(125) + 2 * a(137) + a(149) + a(151)
a( 98) =  3 * s1/13 - a(109) + 2 * a(111) - a(113) + a(135) - 2 * a(137) + a(139) - a(149) - a(151)
a( 91) =  7 * s1/13 - a(103) - a(115) - a(127) - a(139) - a(151) - a(163)
a( 97) =  8 * s1/13 - a( 99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 87) = 15 * s1/13 - a( 99) - a(101) - a(111) - a(115) - a(121) - a(125) - a(127) - a(135) - 2 * a(139) +
                                                                                   - a(149) - a(151) - 2*a(163)
a( 86) =  9 * s1/13 - 2 * a(99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 74) =  4 * s1/13 + a( 99) - a(100) + a(101) + a(111) - 2 * a(113) + a(115) - a(123) - 2 * a(137) +
                                                                                  + a(139) - a(149) - a(151)
a( 77) =  7 * s1/13 - a( 89) - a(101) - a(113) - a(125) - a(137) - a(149)
a( 75) =  7 * s1/13 - a( 89) - a(103) - a(113) - a(123) - a(137) - a(151)
a( 63) = -8 * s1/13 + a( 89) + a(101) + a(103) + a(113) + a(115) - a(122) - a(123) - a(124) - a(126) +
                                                         + a(137) + 2 * a(139) + a(149) + 2 * a(151) + 2*a(163)
a( 62) = 12 * s1/13 - a( 75) - a( 88) - a(101) - a(114) - a(122) - a(123) - a(124) - a(125) - a(126) - 2*a(127)

a( 7) = p2 - a(163)
a(19) = p2 - a(149)
a(20) = p2 - a(150)
a(21) = p2 - a(151)
a(31) = p2 - a(135)
a(32) = p2 - a(136)
a(33) = p2 - a(137)
a(34) = p2 - a(138)
a(35) = p2 - a(139)
a(43) = p2 - a(127)
a(44) = p2 - a(122)

a(45) = p2 - a(123)
a(46) = p2 - a(124)
a(47) = p2 - a(125)
a(48) = p2 - a(126)
a(49) = p2 - a(121)
a(55) = p2 - a( 63)
a(56) = p2 - a( 62)
a(57) = p2 - a(113)
a(58) = p2 - a(110)
a(59) = p2 - a(111)
a(60) = p2 - a(112)

a(61) = p2 - a(109)
a(67) = p2 - a( 77)
a(68) = p2 - a( 76)
a(69) = p2 - a( 75)
a(70) = p2 - a( 74)
a(71) = p2 - a( 99)
a(72) = p2 - a( 98)
a(73) = p2 - a( 97)
a(79) = p2 - a( 91)
a(80) = p2 - a( 90)

a( 81) = p2 - a( 89)
a( 82) = p2 - a( 88)
a( 83) = p2 - a( 87)
a( 84) = p2 - a( 86)
a( 93) = p2 - a( 103)
a( 94) = p2 - a( 102)
a( 95) = p2 - a( 101)
a( 96) = p2 - a( 100)
a(107) = p2 - a(115)
a(108) = p2 - a(114)

With the independent variables:

   a(i) for i = 76, 89, 90, 91, 99 ... 103, 111 ... 115, 123 ... 127, 135 ... 139, 149, 150, 151, 163

   s1 the Magic Sum and p2 = 2 * s1 / 13.

The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:

Mc7 = 59759
o o o o o o 17033 o o o o o o
o o o o o 8573 53 47 o o o o o
o o o o 191 16901 8291 16937 131 o o o o
o o o 9491 311 383 401 16553 16823 15797 o o o
o o 6983 3833 16097 587 15287 653 10061 13241 10091 o o
o 1301 16427 11597 881 12527 5147 7937 16193 5477 647 15773 o
16187 16433 6737 14723 12791 3947 8537 13127 4283 2351 10337 641 887
o 16607 16481 2207 5903 9137 11927 4547 11171 14867 593 467 o
o o 263 16631 7013 16487 1787 16421 977 443 16811 o o
o o o 1277 16763 16691 16673 521 251 7583 o o o
o o o o 16883 173 8783 137 16943 o o o o
o o o o o 8501 17021 17027 o o o o o
o o o o o o 41 o o o o o o

Prime Number Concentric Magic Squares with order 7 Diamond Inlays can be constructed as follows:

  • Generate order 7 Diamond Inlays;
  • Complete the order 9 border (4 x 3 corner numbers), based on a selection from the order 7 Diamond Inlays;
  • Complete the order 11 border (4 x 7 corner numbers), based on a selection from the order 9 border / diamond combinations;
  • Complete the order 13 border, based on a selection from the order 11 border / diamond combinations.

Attachment 18.7.7 shows miscellaneous suitable order 7 Diamond Inlays (ref. Diamond7).

Attachment 18.7.8 shows the first occurring order 9 border / diamond combination with 4 x 3 corner numbers, for each of the order 7 Diamond Inlays shown in Attachment 18.7.7 (ref. Priem9f).

Attachment 18.7.9 shows the first occurring order 11 border / diamond combination with 4 x 7 corner numbers, for each of the order 7 Diamond Inlays shown in Attachment 18.7.8 (ref. Priem11f).

Attachment Attachment 18.7.10 shows the first occurring order 13 Concentric Magic Squares for each of the order 11 border / diamond combinations shown in Attachment 18.7.9 (ref. MgcSqr13a).

20.2.1 Associated Magic Squares (5 x 5)
       Diamond Inlay Order 3

The defining equations for fifth order Associated Magic Squares with third order Diamond Inlays are:

a(21) =        s1 - a(22) - a(23) - a(24) - a(25)
a(18) =  0.8 * s1 + a(19) - 2 * a(20) - a(22) + 2 * a(23) - a(24) - 2 * a(25)
a(17) =  0.8 * s1 - a(19) - 2 * a(23)
a(16) = -0.6 * s1 - a(19) + a(20) + a(22) + a(24) + 2 * a(25)
a(15) =  0.6 * s1 - a(19) - a(23)
a(14) =        s1 - 2 * a(19) + a(22) - 2 * a(23) - a(24)
a(13) =  0.2 * s1

a(12) = p2 - a(14)
a(11) = p2 - a(15)
a(10) = p2 - a(16)

a( 9) = p2 - a(17)
a( 8) = p2 - a(18)
a( 7) = p2 - a(19)

a( 6) = p2 - a(20)
a( 5) = p2 - a(21)
a( 4) = p2 - a(22)

a( 3) = p2 - a(23)
a( 2) = p2 - a(24)
a( 1) = p2 - a(25)

with a(19), a(20), a(22) ... a(25) the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.

The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares (ref. AssDia5), of which an example is shown below:

Mc5 = 1255
461 233 239 11 311
149 83 101 443 479
431 389 251 113 71
23 59 401 419 353
191 491 263 269 41

Attachment 20.5.1 shows one Prime Number Associated Magic Square with Diamond Inlay for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.2.2 Associated Magic Squares (7 x 7)
       Diamond Inlays Order 3 and 4

The defining equations for Order 7 Associated Magic Squares with Order 3 and 4 Diamond Inlays are:

a(46) =   4 * s1/7 - a(40) - a(34) - a(28)
a(45) =       s1/7 + a(47) - 2 * a(27) + a(26) - a(20) + a(46) + a(40) - a(28)
a(43) =       s1   - a(44) - a(45) - a(47) - a(48) - a(49) - a(46)
a(39) =   3 * s1/7 - a(33) - a(27)
a(38) =              a(20) - a(46) + a(28)
a(37) = - 3 * s1/7 + a(41) - a(44) + a(48) + a(27) + a(20) + a(34)
a(36) =       s1   - 2 * a(41) - a(42) + a(44) - a(48) + a(33) - 2 * a(20) + a(46) - a(40) - a(34) - a(28)
a(35) = (17 * s1/7 - 2 * a(41) - 2*a(42) - 2*a(47) - 2 * a(48) - 2 * a(49) - a(33) + 2 * a(20) +
                                                           - 2 * a(46) - 2 * a(40) - 2 * a(34)) / 2
a(32) =   4 * s1/7 - a(26) - 2 * a(20) + a(46) - a(28)
a(29) =   3 * s1/7 - a(35) - 2 * a(33) - 2 * a(27) + a(26) + 3 * a(20) - a(46) - a(34) + a(28)
a(26) =   4 * s1/7 - a(20) -     a(34) -     a(28)
a(19) =   4 * s1/7 - a(33) - 2 * a(27)
a(25) =       s1/7

a(31) = p2 - a(19)
a(30) = p2 - a(20)
a(24) = p2 - a(26)
a(23) = p2 - a(27)
a(22) = p2 - a(28)
a(21) = p2 - a(29)

a(18) = p2 - a(32)
a(17) = p2 - a(33)
a(16) = p2 - a(34)
a(15) = p2 - a(35)
a(14) = p2 - a(36)
a(13) = p2 - a(37)

a(12) = p2 - a(38)
a(11) = p2 - a(39)
a(10) = p2 - a(40)
a( 9) = p2 - a(41)
a( 8) = p2 - a(42)
a( 7) = p2 - a(43)

a(6) = p2 - a(44)
a(5) = p2 - a(45)
a(4) = p2 - a(46)
a(3) = p2 - a(47)
a(2) = p2 - a(48)
a(1) = p2 - a(49)

with the independent variables

    a(i) for i = 20, 27, 28, 33, 34, 40, 41, 42, 44, 47, 48, 49

    s1 the Magic Sum and p2 = 2 * s1 / 7.

The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares (ref. AssDia7a), of which an example is shown below:

Mc7 = 4781
509 1307 1277 389 149 797 353
647 383 137 1193 1109 503 809
317 887 263 1097 83 1187 947
1319 593 347 683 1019 773 47
419 179 1283 269 1103 479 1049
557 863 257 173 1229 983 719
1013 569 1217 977 89 59 857

Attachment 20.6.1 shows one Prime Number Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

Note:
For larger Magic Sums a more efficient Border Routine has been developed which is incorporated in AssDia7b.

20.2.3 Associated Magic Squares (9 x 9)
       Diamond Inlays Order 4 and 5

Order 9 Associated Magic Squares with Order 4 and 5 Diamond Inlays can be constructed as follows:

  • Read previously generated Order 5 Associated - or Ultra Magic Diamonds with Magic Sum s5 = 5*s9/9;
  • Generate Order 4 Associated Magic Diamonds with Magic Sum s4 = 4*s9/9;
  • Complete the Order 9 Associated Magic Squares with the remaining Border Pairs.

It is convenient to split the two bottom rows and right columns into parts summing to s3 = s9/3 and s6 = 2*s9/3, which results in following border equations:

a9(79) =     s3   - a9(80) - a9(81)
a9(70) =     s3   - a9(71) - a9(72)
a9(63) =     s3   - a9(72) - a9(81)
a9(62) =     s3   - a9(71) - a9(80)
a9(76) =     s9   - a9( 4) - a9(13) - a9(22) - a9(31) - a9(40) - a9(49) - a9(58) - a9(67)
a9(75) =     s9   - a9( 3) - a9(12) - a9(21) - a9(30) - a9(39) - a9(48) - a9(57) - a9(66)
a9(55) =     s9   - a9(56) - a9(57) - a9(58) - a9(59) - a9(60) - a9(61) - a9(62) - a9(63) 
a9(64) =     s9   - a9(65) - a9(66) - a9(67) - a9(68) - a9(69) - a9(70) - a9(71) - a9(72)
a9(74) =     s9   - a9( 2) - a9(11) - a9(20) - a9(29) - a9(38) - a9(47) - a9(56) - a9(65)
a9(73) =     s9   - a9(74) - a9(75) - a9(76) - a9(77) - a9(78) - a9(79) - a9(80) - a9(81)
a9(54) =(7 * s9 - 4 * a9(55) - 5 * a9(56) - 8 * a9(64) -  9 * a9(65) - 10 * a9(66) - 10 * a9(70)  +
                    - a9(74) - 2 * a9(75) - 3 * a9(76) + 12 * a9(77) -  5 * a9(78) - 10 * a9(79)) / 8
a9(46) =     s9     - a9(47) - a9(48) - a9(49) - a9(50) - a9(51) - a9(52) - a9(53) - a9(54)

a9( 1) = p2 - a9(81)
a9( 2) = p2 - a9(80)
a9( 3) = p2 - a9(79)
a9( 4) = p2 - a9(78)
a9( 6) = p2 - a9(76)

a9( 7) = p2 - a9(75)
a9( 8) = p2 - a9(74)
a9( 9) = p2 - a9(73)
a9(10) = p2 - a9(72)
a9(11) = p2 - a9(71)

a9(12) = p2 - a9(70)
a9(16) = p2 - a9(66)
a9(17) = p2 - a9(65)
a9(18) = p2 - a9(64)
a9(19) = p2 - a9(63)

a9(20) = p2 - a9(62)
a9(26) = p2 - a9(56)
a9(27) = p2 - a9(55)
a9(28) = p2 - a9(54)
a9(36) = p2 - a9(46)

with the independent border variables

    a9(i) for i = 56, 65, 66, 71, 72, 78, 80, 81

    s9 the Magic Sum, s3 = s9 / 3 and p2 = 2 * s9 / 9.

The equations shown above can be incorporated in a guessing routine to complete subject Associated Magic Squares (ref. AssDia9), of which an example is shown below:

Mc9 = 28719
6269 2153 1151 5639 2579 599 239 3989 6101
1931 1439 6203 3413 569 3581 3539 2141 5903
1373 5981 1973 863 3719 6311 4493 3923 83
269 2111 4973 4049 5021 1193 5861 4799 443
5879 6359 3023 911 3191 5471 3359 23 503
5939 1583 521 5189 1361 2333 1409 4271 6113
6299 2459 1889 71 2663 5519 4409 401 5009
479 4241 2843 2801 5813 2969 179 4943 4451
281 2393 6143 5783 3803 743 5231 4229 113

Attachment 20.7.1 shows one Prime Number Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.2.4 Associated Magic Squares (11 x 11)
       Diamond Inlays Order 5 and 6

Order 11 Associated Magic Squares with Order 5 and 6 Diamond Inlays can be constructed as follows:

  • Read previously generated order 6 Associated Magic Diamonds with Magic Sum s6 = 6*s1/11;
  • Generate order 5 Associated Magic Diamonds with Magic Sum s5 = 5*s1/11;
  • Complete the Order 11 Associated Magic Squares with the remaining Border Pairs.

It is convenient to split the bottom row and right column into parts summing to s4 = 4*s1/11 and s7 = 7*s1/11, which results in following border equations:

a(115) =   s1 - a(  5) - a( 16) - a( 27) - a( 38) - a( 49) - a( 60) - a( 71) - a( 82) - a( 93) - a(104)
a( 55) =   s1 - a( 45) - a( 46) - a( 47) - a( 48) - a( 49) - a( 50) - a( 51) - a( 52) - a( 53) - a( 54)
a(118) =   s4 - a(119) - a(120) - a(121)
a(103) =   s1 - a(  4) - a( 15) - a( 26) - a( 37) - a( 48) - a( 59) - a( 70) - a( 81) - a( 92) - a(114)
a( 88) =   s4 - a( 99) - a(110) - a(121)
a( 87) =   s1 - a( 78) - a( 79) - a( 80) - a( 81) - a( 82) - a( 83) - a( 84) - a( 85) - a( 86) - a( 88)
a(113) =   s1 - a(111) - a(112) - a(114) - a(115) - a(116) - a(117) - a(118) - a(119) - a(120) - a(121)
a( 89) =   s1 - a(  1) - a( 12) - a( 23) - a( 34) - a( 45) - a( 56) - a( 67) - a( 78) - a(100) - a(111)
a(101) =   s1 - a(100) - a(102) - a(103) - a(104) - a(105) - a(106) - a(107) - a(108) - a(109) - a(110)
a( 90) =   s1 - a(  2) - a( 13) - a( 24) - a( 35) - a( 46) - a( 57) - a( 68) - a( 79) - a(101) - a(112)
a( 97) =(2*s1/11 - a(9)- a( 20) + a( 23) + a( 24) + a( 26) + a( 27) + a( 28) + a( 29) + a( 30) + a( 32) + 
                                         + a(33) - a(42) - a(53) - a(64) - a(75) - a(86) - a(108) - a(119)) / 2
a( 91) =   s1 - a( 97) - a( 89) - a( 90) - a( 92) - a( 93) - a( 94) - a( 95) - a( 96) - a( 98) - a( 99)

a(1) = p2 - a(121)
a(2) = p2 - a(120)
a(3) = p2 - a(119)
a(4) = p2 - a(118)
a(5) = p2 - a(117)
a(7) = p2 - a(115)
a(8) = p2 - a(114)
a(9) = p2 - a(113)

a(10) = p2 - a(112)
a(11) = p2 - a(111)
a(12) = p2 - a(110)
a(13) = p2 - a(109)
a(14) = p2 - a(108)
a(15) = p2 - a(107)
a(19) = p2 - a(103)
a(20) = p2 - a(102)

a(21) = p2 - a(101)
a(22) = p2 - a(100)
a(23) = p2 - a( 99)
a(24) = p2 - a( 98)
a(25) = p2 - a( 97)
a(31) = p2 - a( 91)
a(32) = p2 - a( 90)

a(33) = p2 - a(89)
a(34) = p2 - a(88)
a(35) = p2 - a(87)
a(45) = p2 - a(77)
a(67) = p2 - a(55)
a(78) = p2 - a(44)
a(79) = p2 - a(43)

with the independent border variables:

   a(i) for i = 43, 44, 77, 98, 99, 100, 102, 107 ... 112, 114, 117, 119, 120, 121

   s1 the Magic Sum, p2 = 2 * s1 / 11 and s4 = 2 * p2.

The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares (ref. AssDia11), of which an example is shown below:

Mc11 = 36619
6653 5897 677 89 461 5171 6389 6521 857 947 2957
5507 2579 2531 6269 4679 1637 1907 4451 647 1361 5051
809 719 6101 5039 4421 1559 3929 1427 2309 4217 6089
347 3881 401 2711 2939 3617 4241 5351 5861 5399 1871
6551 167 2399 4937 3167 2999 1511 1787 4547 3467 5087
4517 5477 5441 3821 5639 3329 1019 2837 1217 1181 2141
1571 3191 2111 4871 5147 3659 3491 1721 4259 6491 107
4787 1259 797 1307 2417 3041 3719 3947 6257 2777 6311
569 2441 4349 5231 2729 5099 2237 1619 557 5939 5849
1607 5297 6011 2207 4751 5021 1979 389 4127 4079 1151
3701 5711 5801 137 269 1487 6197 6569 5981 761 5

Attachment 20.8.1 shows one Prime Number Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.2.5 Associated Magic Squares (13 x 13)
       Diamond Inlays Order 6 and 7

Order 13 Associated Magic Squares with Order 6 and 7 Diamond Inlays can be constructed as follows:

  • Read previously generated order 7 Associated Magic Diamonds with Magic Sum s7 = 7*s1/13;
  • Generate order 6 Associated Magic Diamonds with Magic Sum s6 = 6*s1/13;
  • Complete the Order 13 Associated Magic Squares with the remaining Border Pairs.

It is convenient to split the two bottom rows and right columns into parts summing to s4 = 4*s1/13 and s9 = 9*s1/13, which results in following border equations:

a(162) = s1 - a(  6) - a( 19) - a( 32) - a( 45)-a( 58)-a( 71)-a( 84)-a( 97) - a(110) - a(123) - a(136) - a(149)
a(161) = s5 - a(162) - a(163) - a(164) - a(165)
a(148) = s1 - a(  5) - a( 18) - a( 31) - a( 44)-a( 57)-a( 70)-a( 83)-a( 96) - a(109) - a(122) - a(135) - a(161)
a( 78) = s1 - a( 66) - a( 67) - a( 68) - a( 69)-a( 70)-a( 71)-a( 72)-a( 73) - a( 74) - a( 75) - a( 76) - a( 77)
a(116) = s1 - a(105) - a(106) - a(107) - a(108)-a(109)-a(110)-a(111)-a(112) - a(113) - a(114) - a(115) - a(117)
a(166) = s4 - a(167) - a(168) - a(169)
a(130) = s4 - a(143) - a(156) - a(169)
a(153) = s4 - a(154) - a(155) - a(156)
a(129) = s4 - a(142) - a(155) - a(168)
a(160) = s4 - a(159) - a(158) - a(157)
a(118) = s1 - a(  1) - a( 14) - a( 27) - a( 40)-a( 53)-a( 66)-a( 79)-a( 92) - a(105) - a(131) - a(144) - a(157)
a(147) = s1 - a(144) - a(145) - a(146) - a(148)-a(149)-a(150)-a(151)-a(152) - a(153) - a(154) - a(155) - a(156)
a(119) = s1 - a(  2) - a( 15) - a( 28) - a( 41)-a( 54)-a( 67)-a( 80)-a( 93) - a(106) - a(132) - a(145) - a(158)
a( 50) = s1 - a( 40) - a( 41) - a( 42) - a( 43)-a( 44)-a( 45)-a( 46)-a( 47) - a( 48) - a( 49) - a( 51) - a( 52)
a(133) = s1 - a(  3) - a( 16) - a( 29) - a( 42)-a( 55)-a( 68)-a( 81)-a( 94) - a(107) - a(120) - a(146) - a(159)

a(140) =(p2 - a(10) - a(23) + a(27) + a(28) + a(29) + a(31) + a( 32) + a( 33) + a( 34) + a( 35) + a( 37) + 
            + a(38) + a(39) - a(49) - a(62) - a(75) - a(88) - a(101) - a(114) - a(127) - a(153) - a(166)) / 2

a(134) = s1 - a(140) - a(131) - a(132) - a(133)-a(135)-a(136)-a(137)-a(138) - a(139) - a(141) - a(142) - a(143)

a( 1) = p2 - a(169)
a( 2) = p2 - a(168)
a( 3) = p2 - a(167)
a( 4) = p2 - a(166)
a( 5) = p2 - a(165)
a( 6) = p2 - a(164)
a( 8) = p2 - a(162)
a( 9) = p2 - a(161)
a(10) = p2 - a(160)
a(11) = p2 - a(159)
a(12) = p2 - a(158)

a(13) = p2 - a(157)
a(14) = p2 - a(156)
a(15) = p2 - a(155)
a(16) = p2 - a(154)
a(17) = p2 - a(153)
a(18) = p2 - a(152)
a(22) = p2 - a(148)
a(23) = p2 - a(147)
a(24) = p2 - a(146)
a(25) = p2 - a(145)
a(26) = p2 - a(144)

a(27) = p2 - a(143)
a(28) = p2 - a(142)
a(29) = p2 - a(141)
a(30) = p2 - a(140)
a(36) = p2 - a(134)
a(37) = p2 - a(133)
a(38) = p2 - a(132)
a(39) = p2 - a(131)
a(40) = p2 - a(130)
a(41) = p2 - a(129)

a(42) = p2 - a(128)
a(50) = p2 - a(120)
a(51) = p2 - a(119)
a(52) = p2 - a(118)
a(53) = p2 - a(117)
a(54) = p2 - a(116)
a(64) = p2 - a(106)
a(65) = p2 - a(105)
a(66) = p2 - a(104)
a(78) = p2 - a( 92)

with the independent border variables:

   a(i) for i = 64, 65, 104, 117, 128, 131, 132, 141 ... 146, 152, 154 ... 159, 164, 165, 167, 168 and 169

   s1 the Magic Sum, p2 = 2 * s1 / 13, s4 = 2 * p2 and s5 = 5 * s1 / 13.

The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares (ref. AssDia13), of which an example is shown below:

Mc13 = 113711
467 16931 15383 2207 2441 7727 16553 16067 947 1571 16007 16217 1193
16673 887 14717 2711 14633 8237 101 10301 15683 1493 4391 7691 16193
16127 14087 1913 13421 13121 17489 7817 11 2357 2903 6047 3191 15227
1721 3083 4751 1523 7457 1733 17387 13577 6221 15077 15671 16187 9323
17093 1847 1061 9791 2543 17183 2957 12413 16811 11351 2837 593 17231
13913 16481 17471 6323 557 7331 461 13337 5003 12161 17477 863 2333
4253 173 15881 17327 15017 14753 8747 2741 2477 167 1613 17321 13241
15161 16631 17 5333 12491 4157 17033 10163 16937 11171 23 1013 3581
263 16901 14657 6143 683 5081 14537 311 14951 7703 16433 15647 401
8171 1307 1823 2417 11273 3917 107 15761 10037 15971 12743 14411 15773
2267 14303 11447 14591 15137 17483 9677 5 4373 4073 15581 3407 1367
1301 9803 13103 16001 1811 7193 17393 9257 2861 14783 2777 16607 821
16301 1277 1487 15923 16547 1427 941 9767 15053 15287 2111 563 17027

It can be noticed that the order 7 Diamond Inlay of the square shown above contains an order 3 and an order 4 Diamond Inlay as well.

Attachment 20.8.2 shows one Prime Number Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

20.3   Summary

The obtained results regarding the miscellaneous Magic Squares with Diamond Inlays as deducted and discussed in previous sections are summarized in following table:

Order

Characteristics

Subroutine

Results

5

Concentric, Diamond Inlay Order 3

ConcDia5

Attachment 20.1.1

9

Concentric, Diamond Inlay Order 5

ConcDia9

Attachment 20.3.3

11

Concentric, Diamond Inlay Order 6

ConcDia11

Attachment 20.4.3

13

Concentric, Diamond Inlay Order 7

MgcSqr13a

Attachment 18.7.10

5

Associated, Diamond Inlay Order 3

AssDia5

Attachment 20.5.1

7

Associated, Diamond Inlays Order 3 and 4

AssDia7a

Attachment 20.6.1

9

Associated, Diamond Inlays Order 4 and 5

AssDia9

Attachment 20.7.1

11

Associated, Diamond Inlays Order 5 and 6

AssDia11

Attachment 20.8.1

13

Associated, Diamond Inlays Order 6 and 7

AssDia13

Attachment 20.8.2

Following sections will describe and illustrate how Prime Number (Pan) Magic Squares can be constructed based on the sum of suitable selected Latin Squares.


Vorige Pagina Volgende Pagina Index About the Author