20.0 Special Magic Squares, Prime Numbers, Diamond Inlays
This section describes how Prime Number Magic Squares with Diamond Inlays can be constructed for miscellaneous orders.
20.1.1 Concentric Magic Squares (5 x 5)
Diamond Inlay Order 3
The defining equations for fifth order Concentric Magic Squares with third order Diamond Inlays are:
a(21) = s1 - a(22) - a(23) - a(24) - a(25)
a(18) = -0.2 * s1 + 2 * a(23)
a(17) = 0.8 * s1 - a(19) - 2 * a(23)
a(15) = 0.6 * s1 - a(19) - a(23)
a(14) = s1 - 2 * a(19) - 2 * a(23)
a(10) = s1 + a(19) - a(20) - a(22) - a(24) - 2 * a(25)
a(13) = 0.2 * s1
a(1) = p2 - a(25)
a(2) = p2 - a(22)
a(3) = p2 - a(23)
|
a(4) = p2 - a(24)
a(5) = p2 - a(21)
a(6) = p2 - a(10)
|
a(7) = p2 - a(19)
a(8) = p2 - a(18)
a(9) = p2 - a(17)
|
a(11) = p2 - a(15)
a(12) = p2 - a(14)
a(16) = p2 - a(20)
|
with a(19), a(20), a(22) ... a(25) the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.
The equations shown above can be incorporated in a guessing routine to generate subject Concentric Magic Squares
(ref. ConcDia5), of which an example is shown below:
Mc5 = 7265
2887 |
619 |
823 |
2833 |
103 |
109 |
2383 |
193 |
1783 |
2797 |
1153 |
853 |
1453 |
2053 |
1753 |
313 |
1123 |
2713 |
523 |
2593 |
2803 |
2287 |
2083 |
73 |
19 |
Attachment 20.1.1 shows one Prime Number
Concentric Magic Square with Diamond Inlay for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.1.2 Concentric Magic Squares (7 x 7)
Diamond Inlay Order 4
It can be proven that order 7 (Prime Number) Concentric Magic Squares with 4 x 4 Diamond Inlay can’t exist for distinct integers.
20.1.3 Concentric Magic Squares (9 x 9)
Diamond Inlay Order 5
The defining equations for 5 x 5 Diamond Inlays suitable for order 9 Concentric Magic Squares are
a(58) = - s1/9 - a(59) - a(60) + a(67) + a(69) + 2 * a(77)
a(57) = 6*s1/9 - a(61) - a(67) - a(69) - 2 * a(77)
a(50) = -3*s1/9 + 2 * a(59) + a(67) + a(69)
a(49) = 6*s1/9 - a(51) - 2 * a(59) - a(67) - a(69)
a(45) = 5*s1/9 - a(53) - a(61) - a(69) - a(77)
a(43) = 5*s1/9 - a(51) - a(53) - a(59) - a(69)
a(42) = 7*s1/9 - 2 * a(51) - 2 * a(59) - a(67) - a(69)
a(35) = a(53) - a(67) + a(69)
a(34) = 4*s1/9 + a(51) - a(52) + a(53) + a(59) - 2 * a(61) - a(67) - 2 * a(77)
a(41) = s1/9
a( 5) = p2 - a(77)
a(13) = p2 - a(67)
a(14) = p2 - a(68)
a(15) = p2 - a(69)
a(21) = p2 - a(61)
|
a(22) = p2 - a(58)
a(23) = p2 - a(59)
a(24) = p2 - a(60)
a(25) = p2 - a(57)
a(29) = p2 - a(35)
|
a(30) = p2 - a(34)
a(31) = p2 - a(51)
a(32) = p2 - a(50)
a(33) = p2 - a(49)
a(37) = p2 - a(45)
|
a(38) = p2 - a(44)
a(39) = p2 - a(43)
a(40) = p2 - a(42)
a(47) = p2 - a(53)
a(48) = p2 - a(52)
|
with a(44), a(51), a(52), a(53), a(59), a(60), a(61), a(67), a(68), a(69), a(77) the independent variables,
s1 the Magic Sum and p2 = 2 * s1 / 9.
The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:
Mc5 = 6865
o |
o |
o |
o |
5 |
o |
o |
o |
o |
o |
o |
o |
2693 |
47 |
2729 |
o |
o |
o |
o |
o |
2087 |
773 |
677 |
2609 |
719 |
o |
o |
o |
1223 |
269 |
1109 |
2657 |
353 |
2477 |
1523 |
o |
857 |
2687 |
1163 |
617 |
1373 |
2129 |
1583 |
59 |
1889 |
o |
1187 |
1319 |
2393 |
89 |
1637 |
1427 |
1559 |
o |
o |
o |
2027 |
1973 |
2069 |
137 |
659 |
o |
o |
o |
o |
o |
53 |
2699 |
17 |
o |
o |
o |
o |
o |
o |
o |
2741 |
o |
o |
o |
o |
Prime Number Concentric Magic Squares with order 5 Diamond Inlays can be constructed as follows:
-
Generate order 5 Diamond Inlays;
-
Complete the order 7 border (4 x 3 corner numbers), based on a selection from the order 5 Diamond Inlays;
-
Complete the order 9 border, based on a selection from the order 7 border / diamond combinations.
Attachment 20.3.1 shows miscellaneous suitable order 5 Diamond Inlays
(ref. Diamond5).
Attachment 20.3.2 shows the first occurring order 7 border / diamond combination with 4 x 3 corner numbers, for each of the order 5 Diamond Inlays shown in
Attachment 20.3.1
(ref. Priem7e).
Attachment Attachment 20.3.3 shows the first occurring order 9 Concentric Magic Squares for each of the order 7 border / diamond combinations shown in
Attachment 20.3.2
(ref. ConcDia9).
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
Note:
It can be proven that order 9 (Prime Number) Concentric Magic Squares with both 4 x 4 and 5 x 5 Diamond Inlays can’t exist for distinct integers.
20.1.4 Concentric Magic Squares (11 x 11)
Diamond Inlay Order 6
The defining equations for a 6 x 6 Diamond Inlay suitable for order 11 Concentric Magic Squares are
a(92) = 6*s1/11 - a(96) - a(104) - a(106) - 2 * a(116)
a(91) = s1/11 - a(93) - a(94) - a(95) - a(97) + a(104) + a(106) + 2 * a(116)
a(82) = 6*s1/11 - a(84) - 2 * a(94) - a(104) - a(106)
a(81) = - s1/11 - a(83) - a(85) + 2 * a(94) + a(104) + a(106)
a(73) = - s1/11 + 0.5 * a(74) + 0.5 * a(84) + 0.5 * a(86) + 0.5 * a(96)
a(72) = -3*s1/11 + a(94) + a(104) + a(106) + a(116)
a(71) = 7*s1/11 - 0.5 * a(74) - 0.5 * a(84) - 0.5 * a(86) - a(94) - 0.5 * a(96) - a(104) - a(106) - a(116)
a(66) = 6*s1/11 - a(76) - a(86) - a(96) - a(106) - a(116)
a(63) = p2 + a(64) - a(74) + a(76) - a(83) - a(84) - 2 * a(85) + a(94) + a(106)
a(62) = 9*s1/11 - a(74) - a(84) - a(86) - a(94) - a(96) - a(104) - a(106) - a(116)
a(54) = 6*s1/11 - a(64) - a(74) - a(84) - a(94) - a(104)
a(53) = 17*s1/11 - 2 * a(64) - a(74) - a(75) - a(76) - a(84) - 2*a(86) + a(91) +
- a(94) - 2*a(96) - a(97) - a(104) - 2*a(106) - 2*a(116)
a(52) = - a(64) - a(76) + a(84) + a(94) + a(104)
a(42) = -12*s1/11 + a(64) + a(74) + a(76) + a(84) + a(86) + a(94) + 2 * a(96) + a(104) + 2 * a(106) + 2 * a(116)
a(61) = s1/11
a( 6) = p2 - a(116)
a(16) = p2 - a(104)
a(17) = p2 - a(105)
a(18) = p2 - a(106)
a(25) = p2 - a( 97)
a(26) = p2 - a( 92)
a(27) = p2 - a( 93)
a(28) = p2 - a( 94)
|
a(29) = p2 - a(95)
a(30) = p2 - a(96)
a(31) = p2 - a(91)
a(36) = p2 - a(42)
a(37) = p2 - a(85)
a(38) = p2 - a(82)
a(39) = p2 - a(83)
a(40) = p2 - a(84)
|
a(41) = p2 - a(81)
a(46) = p2 - a(54)
a(47) = p2 - a(53)
a(48) = p2 - a(52)
a(49) = p2 - a(73)
a(50) = p2 - a(72)
a(51) = p2 - a(71)
a(56) = p2 - a(66)
|
a(57) = p2 - a(65)
a(58) = p2 - a(64)
a(59) = p2 - a(63)
a(60) = p2 - a(62)
a(68) = p2 - a(76)
a(69) = p2 - a(75)
a(70) = p2 - a(74)
a(80) = p2 - a(86)
|
with the independent variables:
a(i) for i = 64, 65, 74, 75, 76, 83 ... 86, 93 ... 97, 104, 105, 106, 116
s1 the Magic Sum and p2 = 2 * s1 / 11.
The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:
Mc6 = 15342
o |
o |
o |
o |
o |
7 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
5011 |
37 |
5101 |
o |
o |
o |
o |
o |
o |
2053 |
283 |
4957 |
523 |
4987 |
4933 |
163 |
o |
o |
o |
o |
3733 |
4651 |
1021 |
1567 |
3163 |
2383 |
1381 |
o |
o |
o |
2281 |
457 |
3943 |
1933 |
2971 |
2767 |
1171 |
4657 |
2833 |
o |
4027 |
4801 |
3691 |
787 |
3391 |
2557 |
1723 |
4327 |
1423 |
313 |
1087 |
o |
1063 |
2803 |
673 |
2347 |
2143 |
3181 |
4441 |
2311 |
4051 |
o |
o |
o |
211 |
2731 |
4093 |
3547 |
1951 |
463 |
4903 |
o |
o |
o |
o |
4951 |
4831 |
157 |
4591 |
127 |
181 |
3061 |
o |
o |
o |
o |
o |
o |
103 |
5077 |
13 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
5107 |
o |
o |
o |
o |
o |
Prime Number Concentric Magic Squares with order 6 Diamond Inlays can be constructed as follows:
-
Generate order 6 Diamond Inlays,
together with the four corner points of the related order 7 concentric square;
-
Complete the order 9 border (4 x 5 corner numbers),
based on a selection from the Order 7 concentric square / diamond combinations;
-
Complete the order 11 border, based on a selection from the order 9 concentric square / diamond combinations.
Attachment 20.4.1 shows miscellaneous suitable order 6 Diamond Inlays and
the four corner points of the order 7 concentric squares
(ref. Diamond6).
Attachment 20.4.2 shows the first occurring order 9 border / diamond combination with 4 x 5 corner numbers, for each of the order 6 Diamond Inlays shown in
Attachment 20.4.1
(ref. Priem9e).
Attachment Attachment 20.4.3 shows the first occurring order 11 Concentric Magic Squares for each of the order 9 border / diamond combinations shown in
Attachment 20.4.2
(ref. ConcDia11).
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.1.5 Concentric Magic Squares (13 x 13)
Diamond Inlay Order 7
The defining equations for a 7 x 7 Diamond Inlay suitable for order 13 Concentric Magic Squares are
a(121) = 8 * s1/13 - a(127) - a(135) - a(139) - a(149) - a(151) - 2 * a(163)
a(122) = - s1/13 - a(123) - a(124) - a(125) - a(126) + a(135) + a(139) + a(149) + a(151) + 2 * a(163)
a(109) = 8 * s1/13 - a(113) - a(123) - a(125) - 2 * a(137) - a(149) - a(151)
a(110) = -3 * s1/13 - a(111) - a(112) + a(123) + a(125) + 2 * a(137) + a(149) + a(151)
a( 98) = 3 * s1/13 - a(109) + 2 * a(111) - a(113) + a(135) - 2 * a(137) + a(139) - a(149) - a(151)
a( 91) = 7 * s1/13 - a(103) - a(115) - a(127) - a(139) - a(151) - a(163)
a( 97) = 8 * s1/13 - a( 99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 87) = 15 * s1/13 - a( 99) - a(101) - a(111) - a(115) - a(121) - a(125) - a(127) - a(135) - 2 * a(139) +
- a(149) - a(151) - 2*a(163)
a( 86) = 9 * s1/13 - 2 * a(99) - 2 * a(111) - a(123) - a(125) - a(135) - a(139)
a( 74) = 4 * s1/13 + a( 99) - a(100) + a(101) + a(111) - 2 * a(113) + a(115) - a(123) - 2 * a(137) +
+ a(139) - a(149) - a(151)
a( 77) = 7 * s1/13 - a( 89) - a(101) - a(113) - a(125) - a(137) - a(149)
a( 75) = 7 * s1/13 - a( 89) - a(103) - a(113) - a(123) - a(137) - a(151)
a( 63) = -8 * s1/13 + a( 89) + a(101) + a(103) + a(113) + a(115) - a(122) - a(123) - a(124) - a(126) +
+ a(137) + 2 * a(139) + a(149) + 2 * a(151) + 2*a(163)
a( 62) = 12 * s1/13 - a( 75) - a( 88) - a(101) - a(114) - a(122) - a(123) - a(124) - a(125) - a(126) - 2*a(127)
a( 7) = p2 - a(163)
a(19) = p2 - a(149)
a(20) = p2 - a(150)
a(21) = p2 - a(151)
a(31) = p2 - a(135)
a(32) = p2 - a(136)
a(33) = p2 - a(137)
a(34) = p2 - a(138)
a(35) = p2 - a(139)
a(43) = p2 - a(127)
a(44) = p2 - a(122)
|
a(45) = p2 - a(123)
a(46) = p2 - a(124)
a(47) = p2 - a(125)
a(48) = p2 - a(126)
a(49) = p2 - a(121)
a(55) = p2 - a( 63)
a(56) = p2 - a( 62)
a(57) = p2 - a(113)
a(58) = p2 - a(110)
a(59) = p2 - a(111)
a(60) = p2 - a(112)
|
a(61) = p2 - a(109)
a(67) = p2 - a( 77)
a(68) = p2 - a( 76)
a(69) = p2 - a( 75)
a(70) = p2 - a( 74)
a(71) = p2 - a( 99)
a(72) = p2 - a( 98)
a(73) = p2 - a( 97)
a(79) = p2 - a( 91)
a(80) = p2 - a( 90)
|
a( 81) = p2 - a( 89)
a( 82) = p2 - a( 88)
a( 83) = p2 - a( 87)
a( 84) = p2 - a( 86)
a( 93) = p2 - a( 103)
a( 94) = p2 - a( 102)
a( 95) = p2 - a( 101)
a( 96) = p2 - a( 100)
a(107) = p2 - a(115)
a(108) = p2 - a(114)
|
With the independent variables:
a(i) for i = 76, 89, 90, 91, 99 ... 103, 111 ... 115, 123 ... 127, 135 ... 139, 149, 150, 151, 163
s1 the Magic Sum and p2 = 2 * s1 / 13.
The equations shown above can be incorporated in a guessing routine to generate subject diamonds, of which an example is shown below:
Mc7 = 59759
o |
o |
o |
o |
o |
o |
17033 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
o |
o |
8573 |
53 |
47 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
191 |
16901 |
8291 |
16937 |
131 |
o |
o |
o |
o |
o |
o |
o |
9491 |
311 |
383 |
401 |
16553 |
16823 |
15797 |
o |
o |
o |
o |
o |
6983 |
3833 |
16097 |
587 |
15287 |
653 |
10061 |
13241 |
10091 |
o |
o |
o |
1301 |
16427 |
11597 |
881 |
12527 |
5147 |
7937 |
16193 |
5477 |
647 |
15773 |
o |
16187 |
16433 |
6737 |
14723 |
12791 |
3947 |
8537 |
13127 |
4283 |
2351 |
10337 |
641 |
887 |
o |
16607 |
16481 |
2207 |
5903 |
9137 |
11927 |
4547 |
11171 |
14867 |
593 |
467 |
o |
o |
o |
263 |
16631 |
7013 |
16487 |
1787 |
16421 |
977 |
443 |
16811 |
o |
o |
o |
o |
o |
1277 |
16763 |
16691 |
16673 |
521 |
251 |
7583 |
o |
o |
o |
o |
o |
o |
o |
16883 |
173 |
8783 |
137 |
16943 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
8501 |
17021 |
17027 |
o |
o |
o |
o |
o |
o |
o |
o |
o |
o |
o |
41 |
o |
o |
o |
o |
o |
o |
Prime Number Concentric Magic Squares with order 7 Diamond Inlays can be constructed as follows:
-
Generate order 7 Diamond Inlays;
-
Complete the order 9 border (4 x 3 corner numbers), based on a selection from the order 7 Diamond Inlays;
-
Complete the order 11 border (4 x 7 corner numbers), based on a selection from the order 9 border / diamond combinations;
-
Complete the order 13 border, based on a selection from the order 11 border / diamond combinations.
Attachment 18.7.7 shows miscellaneous suitable order 7 Diamond Inlays
(ref. Diamond7).
Attachment 18.7.8 shows the first occurring order 9 border / diamond combination with 4 x 3 corner numbers,
for each of the order 7 Diamond Inlays shown in Attachment 18.7.7
(ref. Priem9f).
Attachment 18.7.9 shows the first occurring order 11 border / diamond combination with 4 x 7 corner numbers,
for each of the order 7 Diamond Inlays shown in Attachment 18.7.8
(ref. Priem11f).
Attachment Attachment 18.7.10 shows the first occurring order 13 Concentric Magic Squares for each of the order 11 border / diamond combinations shown in
Attachment 18.7.9
(ref. MgcSqr13a).
20.2.1 Associated Magic Squares (5 x 5)
Diamond Inlay Order 3
The defining equations for fifth order Associated Magic Squares with third order Diamond Inlays are:
a(21) = s1 - a(22) - a(23) - a(24) - a(25)
a(18) = 0.8 * s1 + a(19) - 2 * a(20) - a(22) + 2 * a(23) - a(24) - 2 * a(25)
a(17) = 0.8 * s1 - a(19) - 2 * a(23)
a(16) = -0.6 * s1 - a(19) + a(20) + a(22) + a(24) + 2 * a(25)
a(15) = 0.6 * s1 - a(19) - a(23)
a(14) = s1 - 2 * a(19) + a(22) - 2 * a(23) - a(24)
a(13) = 0.2 * s1
a(12) = p2 - a(14)
a(11) = p2 - a(15)
a(10) = p2 - a(16)
|
a( 9) = p2 - a(17)
a( 8) = p2 - a(18)
a( 7) = p2 - a(19)
|
a( 6) = p2 - a(20)
a( 5) = p2 - a(21)
a( 4) = p2 - a(22)
|
a( 3) = p2 - a(23)
a( 2) = p2 - a(24)
a( 1) = p2 - a(25)
|
with
a(19), a(20), a(22) ... a(25)
the independent variables, s1 the Magic Sum and p2 = 2 * s1 / 5.
The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares
(ref. AssDia5), of which an example is shown below:
Mc5 = 1255
461 |
233 |
239 |
11 |
311 |
149 |
83 |
101 |
443 |
479 |
431 |
389 |
251 |
113 |
71 |
23 |
59 |
401 |
419 |
353 |
191 |
491 |
263 |
269 |
41 |
Attachment 20.5.1 shows one Prime Number
Associated Magic Square with Diamond Inlay for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.2.2 Associated Magic Squares (7 x 7)
Diamond Inlays Order 3 and 4
The defining equations for Order 7 Associated Magic Squares with Order 3 and 4 Diamond Inlays are:
a(46) = 4 * s1/7 - a(40) - a(34) - a(28)
a(45) = s1/7 + a(47) - 2 * a(27) + a(26) - a(20) + a(46) + a(40) - a(28)
a(43) = s1 - a(44) - a(45) - a(47) - a(48) - a(49) - a(46)
a(39) = 3 * s1/7 - a(33) - a(27)
a(38) = a(20) - a(46) + a(28)
a(37) = - 3 * s1/7 + a(41) - a(44) + a(48) + a(27) + a(20) + a(34)
a(36) = s1 - 2 * a(41) - a(42) + a(44) - a(48) + a(33) - 2 * a(20) + a(46) - a(40) - a(34) - a(28)
a(35) = (17 * s1/7 - 2 * a(41) - 2*a(42) - 2*a(47) - 2 * a(48) - 2 * a(49) - a(33) + 2 * a(20) +
- 2 * a(46) - 2 * a(40) - 2 * a(34)) / 2
a(32) = 4 * s1/7 - a(26) - 2 * a(20) + a(46) - a(28)
a(29) = 3 * s1/7 - a(35) - 2 * a(33) - 2 * a(27) + a(26) + 3 * a(20) - a(46) - a(34) + a(28)
a(26) = 4 * s1/7 - a(20) - a(34) - a(28)
a(19) = 4 * s1/7 - a(33) - 2 * a(27)
a(25) = s1/7
a(31) = p2 - a(19)
a(30) = p2 - a(20)
a(24) = p2 - a(26)
a(23) = p2 - a(27)
a(22) = p2 - a(28)
a(21) = p2 - a(29)
|
a(18) = p2 - a(32)
a(17) = p2 - a(33)
a(16) = p2 - a(34)
a(15) = p2 - a(35)
a(14) = p2 - a(36)
a(13) = p2 - a(37)
|
a(12) = p2 - a(38)
a(11) = p2 - a(39)
a(10) = p2 - a(40)
a( 9) = p2 - a(41)
a( 8) = p2 - a(42)
a( 7) = p2 - a(43)
|
a(6) = p2 - a(44)
a(5) = p2 - a(45)
a(4) = p2 - a(46)
a(3) = p2 - a(47)
a(2) = p2 - a(48)
a(1) = p2 - a(49)
|
with the independent variables
a(i) for i = 20, 27, 28, 33, 34, 40, 41, 42, 44, 47, 48, 49
s1 the Magic Sum and p2 = 2 * s1 / 7.
The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares
(ref. AssDia7a), of which an example is shown below:
Mc7 = 4781
509 |
1307 |
1277 |
389 |
149 |
797 |
353 |
647 |
383 |
137 |
1193 |
1109 |
503 |
809 |
317 |
887 |
263 |
1097 |
83 |
1187 |
947 |
1319 |
593 |
347 |
683 |
1019 |
773 |
47 |
419 |
179 |
1283 |
269 |
1103 |
479 |
1049 |
557 |
863 |
257 |
173 |
1229 |
983 |
719 |
1013 |
569 |
1217 |
977 |
89 |
59 |
857 |
Attachment 20.6.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
Note:
For larger Magic Sums a more efficient Border Routine has been developed which is incorporated in
AssDia7b.
20.2.3 Associated Magic Squares (9 x 9)
Diamond Inlays Order 4 and 5
Order 9 Associated Magic Squares with Order 4 and 5 Diamond Inlays
can be constructed as follows:
-
Read previously generated Order 5 Associated - or Ultra Magic Diamonds with Magic Sum s5 = 5*s9/9;
-
Generate Order 4 Associated Magic Diamonds with Magic Sum s4 = 4*s9/9;
-
Complete the Order 9 Associated Magic Squares with the remaining Border Pairs.
It is convenient to split the two bottom rows and right columns into parts summing to s3 = s9/3 and s6 = 2*s9/3,
which results in following border equations:
a9(79) = s3 - a9(80) - a9(81)
a9(70) = s3 - a9(71) - a9(72)
a9(63) = s3 - a9(72) - a9(81)
a9(62) = s3 - a9(71) - a9(80)
a9(76) = s9 - a9( 4) - a9(13) - a9(22) - a9(31) - a9(40) - a9(49) - a9(58) - a9(67)
a9(75) = s9 - a9( 3) - a9(12) - a9(21) - a9(30) - a9(39) - a9(48) - a9(57) - a9(66)
a9(55) = s9 - a9(56) - a9(57) - a9(58) - a9(59) - a9(60) - a9(61) - a9(62) - a9(63)
a9(64) = s9 - a9(65) - a9(66) - a9(67) - a9(68) - a9(69) - a9(70) - a9(71) - a9(72)
a9(74) = s9 - a9( 2) - a9(11) - a9(20) - a9(29) - a9(38) - a9(47) - a9(56) - a9(65)
a9(73) = s9 - a9(74) - a9(75) - a9(76) - a9(77) - a9(78) - a9(79) - a9(80) - a9(81)
a9(54) =(7 * s9 - 4 * a9(55) - 5 * a9(56) - 8 * a9(64) - 9 * a9(65) - 10 * a9(66) - 10 * a9(70) +
- a9(74) - 2 * a9(75) - 3 * a9(76) + 12 * a9(77) - 5 * a9(78) - 10 * a9(79)) / 8
a9(46) = s9 - a9(47) - a9(48) - a9(49) - a9(50) - a9(51) - a9(52) - a9(53) - a9(54)
a9( 1) = p2 - a9(81)
a9( 2) = p2 - a9(80)
a9( 3) = p2 - a9(79)
a9( 4) = p2 - a9(78)
a9( 6) = p2 - a9(76)
|
a9( 7) = p2 - a9(75)
a9( 8) = p2 - a9(74)
a9( 9) = p2 - a9(73)
a9(10) = p2 - a9(72)
a9(11) = p2 - a9(71)
|
a9(12) = p2 - a9(70)
a9(16) = p2 - a9(66)
a9(17) = p2 - a9(65)
a9(18) = p2 - a9(64)
a9(19) = p2 - a9(63)
|
a9(20) = p2 - a9(62)
a9(26) = p2 - a9(56)
a9(27) = p2 - a9(55)
a9(28) = p2 - a9(54)
a9(36) = p2 - a9(46)
|
with the independent border variables
a9(i) for i = 56, 65, 66, 71, 72, 78, 80, 81
s9 the Magic Sum, s3 = s9 / 3 and p2 = 2 * s9 / 9.
The equations shown above can be incorporated in a guessing routine to complete subject Associated Magic Squares
(ref. AssDia9), of which an example is shown below:
Mc9 = 28719
6269 |
2153 |
1151 |
5639 |
2579 |
599 |
239 |
3989 |
6101 |
1931 |
1439 |
6203 |
3413 |
569 |
3581 |
3539 |
2141 |
5903 |
1373 |
5981 |
1973 |
863 |
3719 |
6311 |
4493 |
3923 |
83 |
269 |
2111 |
4973 |
4049 |
5021 |
1193 |
5861 |
4799 |
443 |
5879 |
6359 |
3023 |
911 |
3191 |
5471 |
3359 |
23 |
503 |
5939 |
1583 |
521 |
5189 |
1361 |
2333 |
1409 |
4271 |
6113 |
6299 |
2459 |
1889 |
71 |
2663 |
5519 |
4409 |
401 |
5009 |
479 |
4241 |
2843 |
2801 |
5813 |
2969 |
179 |
4943 |
4451 |
281 |
2393 |
6143 |
5783 |
3803 |
743 |
5231 |
4229 |
113 |
Attachment 20.7.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.2.4 Associated Magic Squares (11 x 11)
Diamond Inlays Order 5 and 6
Order 11 Associated Magic Squares with Order 5 and 6 Diamond Inlays
can be constructed as follows:
-
Read previously generated order 6 Associated Magic Diamonds with Magic Sum s6 = 6*s1/11;
-
Generate order 5 Associated Magic Diamonds with Magic Sum s5 = 5*s1/11;
-
Complete the Order 11 Associated Magic Squares with the remaining Border Pairs.
It is convenient to split the bottom row and right column into parts summing to s4 = 4*s1/11 and s7 = 7*s1/11, which results in following border equations:
a(115) = s1 - a( 5) - a( 16) - a( 27) - a( 38) - a( 49) - a( 60) - a( 71) - a( 82) - a( 93) - a(104)
a( 55) = s1 - a( 45) - a( 46) - a( 47) - a( 48) - a( 49) - a( 50) - a( 51) - a( 52) - a( 53) - a( 54)
a(118) = s4 - a(119) - a(120) - a(121)
a(103) = s1 - a( 4) - a( 15) - a( 26) - a( 37) - a( 48) - a( 59) - a( 70) - a( 81) - a( 92) - a(114)
a( 88) = s4 - a( 99) - a(110) - a(121)
a( 87) = s1 - a( 78) - a( 79) - a( 80) - a( 81) - a( 82) - a( 83) - a( 84) - a( 85) - a( 86) - a( 88)
a(113) = s1 - a(111) - a(112) - a(114) - a(115) - a(116) - a(117) - a(118) - a(119) - a(120) - a(121)
a( 89) = s1 - a( 1) - a( 12) - a( 23) - a( 34) - a( 45) - a( 56) - a( 67) - a( 78) - a(100) - a(111)
a(101) = s1 - a(100) - a(102) - a(103) - a(104) - a(105) - a(106) - a(107) - a(108) - a(109) - a(110)
a( 90) = s1 - a( 2) - a( 13) - a( 24) - a( 35) - a( 46) - a( 57) - a( 68) - a( 79) - a(101) - a(112)
a( 97) =(2*s1/11 - a(9)- a( 20) + a( 23) + a( 24) + a( 26) + a( 27) + a( 28) + a( 29) + a( 30) + a( 32) +
+ a(33) - a(42) - a(53) - a(64) - a(75) - a(86) - a(108) - a(119)) / 2
a( 91) = s1 - a( 97) - a( 89) - a( 90) - a( 92) - a( 93) - a( 94) - a( 95) - a( 96) - a( 98) - a( 99)
a(1) = p2 - a(121)
a(2) = p2 - a(120)
a(3) = p2 - a(119)
a(4) = p2 - a(118)
a(5) = p2 - a(117)
a(7) = p2 - a(115)
a(8) = p2 - a(114)
a(9) = p2 - a(113)
|
a(10) = p2 - a(112)
a(11) = p2 - a(111)
a(12) = p2 - a(110)
a(13) = p2 - a(109)
a(14) = p2 - a(108)
a(15) = p2 - a(107)
a(19) = p2 - a(103)
a(20) = p2 - a(102)
|
a(21) = p2 - a(101)
a(22) = p2 - a(100)
a(23) = p2 - a( 99)
a(24) = p2 - a( 98)
a(25) = p2 - a( 97)
a(31) = p2 - a( 91)
a(32) = p2 - a( 90)
|
a(33) = p2 - a(89)
a(34) = p2 - a(88)
a(35) = p2 - a(87)
a(45) = p2 - a(77)
a(67) = p2 - a(55)
a(78) = p2 - a(44)
a(79) = p2 - a(43)
|
with the independent border variables:
a(i) for i = 43, 44, 77, 98, 99, 100, 102, 107 ... 112, 114, 117, 119, 120, 121
s1 the Magic Sum, p2 = 2 * s1 / 11 and s4 = 2 * p2.
The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares
(ref. AssDia11), of which an example is shown below:
Mc11 = 36619
6653 |
5897 |
677 |
89 |
461 |
5171 |
6389 |
6521 |
857 |
947 |
2957 |
5507 |
2579 |
2531 |
6269 |
4679 |
1637 |
1907 |
4451 |
647 |
1361 |
5051 |
809 |
719 |
6101 |
5039 |
4421 |
1559 |
3929 |
1427 |
2309 |
4217 |
6089 |
347 |
3881 |
401 |
2711 |
2939 |
3617 |
4241 |
5351 |
5861 |
5399 |
1871 |
6551 |
167 |
2399 |
4937 |
3167 |
2999 |
1511 |
1787 |
4547 |
3467 |
5087 |
4517 |
5477 |
5441 |
3821 |
5639 |
3329 |
1019 |
2837 |
1217 |
1181 |
2141 |
1571 |
3191 |
2111 |
4871 |
5147 |
3659 |
3491 |
1721 |
4259 |
6491 |
107 |
4787 |
1259 |
797 |
1307 |
2417 |
3041 |
3719 |
3947 |
6257 |
2777 |
6311 |
569 |
2441 |
4349 |
5231 |
2729 |
5099 |
2237 |
1619 |
557 |
5939 |
5849 |
1607 |
5297 |
6011 |
2207 |
4751 |
5021 |
1979 |
389 |
4127 |
4079 |
1151 |
3701 |
5711 |
5801 |
137 |
269 |
1487 |
6197 |
6569 |
5981 |
761 |
5 |
Attachment 20.8.1 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.2.5 Associated Magic Squares (13 x 13)
Diamond Inlays Order 6 and 7
Order 13 Associated Magic Squares with Order 6 and 7 Diamond Inlays
can be constructed as follows:
-
Read previously generated order 7 Associated Magic Diamonds with Magic Sum s7 = 7*s1/13;
-
Generate order 6 Associated Magic Diamonds with Magic Sum s6 = 6*s1/13;
-
Complete the Order 13 Associated Magic Squares with the remaining Border Pairs.
It is convenient to split the two bottom rows and right columns into parts summing to s4 = 4*s1/13 and s9 = 9*s1/13, which results in following border equations:
a(162) = s1 - a( 6) - a( 19) - a( 32) - a( 45)-a( 58)-a( 71)-a( 84)-a( 97) - a(110) - a(123) - a(136) - a(149)
a(161) = s5 - a(162) - a(163) - a(164) - a(165)
a(148) = s1 - a( 5) - a( 18) - a( 31) - a( 44)-a( 57)-a( 70)-a( 83)-a( 96) - a(109) - a(122) - a(135) - a(161)
a( 78) = s1 - a( 66) - a( 67) - a( 68) - a( 69)-a( 70)-a( 71)-a( 72)-a( 73) - a( 74) - a( 75) - a( 76) - a( 77)
a(116) = s1 - a(105) - a(106) - a(107) - a(108)-a(109)-a(110)-a(111)-a(112) - a(113) - a(114) - a(115) - a(117)
a(166) = s4 - a(167) - a(168) - a(169)
a(130) = s4 - a(143) - a(156) - a(169)
a(153) = s4 - a(154) - a(155) - a(156)
a(129) = s4 - a(142) - a(155) - a(168)
a(160) = s4 - a(159) - a(158) - a(157)
a(118) = s1 - a( 1) - a( 14) - a( 27) - a( 40)-a( 53)-a( 66)-a( 79)-a( 92) - a(105) - a(131) - a(144) - a(157)
a(147) = s1 - a(144) - a(145) - a(146) - a(148)-a(149)-a(150)-a(151)-a(152) - a(153) - a(154) - a(155) - a(156)
a(119) = s1 - a( 2) - a( 15) - a( 28) - a( 41)-a( 54)-a( 67)-a( 80)-a( 93) - a(106) - a(132) - a(145) - a(158)
a( 50) = s1 - a( 40) - a( 41) - a( 42) - a( 43)-a( 44)-a( 45)-a( 46)-a( 47) - a( 48) - a( 49) - a( 51) - a( 52)
a(133) = s1 - a( 3) - a( 16) - a( 29) - a( 42)-a( 55)-a( 68)-a( 81)-a( 94) - a(107) - a(120) - a(146) - a(159)
a(140) =(p2 - a(10) - a(23) + a(27) + a(28) + a(29) + a(31) + a( 32) + a( 33) + a( 34) + a( 35) + a( 37) +
+ a(38) + a(39) - a(49) - a(62) - a(75) - a(88) - a(101) - a(114) - a(127) - a(153) - a(166)) / 2
a(134) = s1 - a(140) - a(131) - a(132) - a(133)-a(135)-a(136)-a(137)-a(138) - a(139) - a(141) - a(142) - a(143)
a( 1) = p2 - a(169)
a( 2) = p2 - a(168)
a( 3) = p2 - a(167)
a( 4) = p2 - a(166)
a( 5) = p2 - a(165)
a( 6) = p2 - a(164)
a( 8) = p2 - a(162)
a( 9) = p2 - a(161)
a(10) = p2 - a(160)
a(11) = p2 - a(159)
a(12) = p2 - a(158)
|
a(13) = p2 - a(157)
a(14) = p2 - a(156)
a(15) = p2 - a(155)
a(16) = p2 - a(154)
a(17) = p2 - a(153)
a(18) = p2 - a(152)
a(22) = p2 - a(148)
a(23) = p2 - a(147)
a(24) = p2 - a(146)
a(25) = p2 - a(145)
a(26) = p2 - a(144)
|
a(27) = p2 - a(143)
a(28) = p2 - a(142)
a(29) = p2 - a(141)
a(30) = p2 - a(140)
a(36) = p2 - a(134)
a(37) = p2 - a(133)
a(38) = p2 - a(132)
a(39) = p2 - a(131)
a(40) = p2 - a(130)
a(41) = p2 - a(129)
|
a(42) = p2 - a(128)
a(50) = p2 - a(120)
a(51) = p2 - a(119)
a(52) = p2 - a(118)
a(53) = p2 - a(117)
a(54) = p2 - a(116)
a(64) = p2 - a(106)
a(65) = p2 - a(105)
a(66) = p2 - a(104)
a(78) = p2 - a( 92)
|
with the independent border variables:
a(i) for i = 64, 65, 104, 117, 128, 131, 132, 141 ... 146, 152, 154 ... 159, 164, 165, 167, 168 and 169
s1 the Magic Sum, p2 = 2 * s1 / 13, s4 = 2 * p2 and s5 = 5 * s1 / 13.
The equations shown above can be incorporated in a guessing routine to generate subject Associated Magic Squares
(ref. AssDia13), of which an example is shown below:
Mc13 = 113711
467 |
16931 |
15383 |
2207 |
2441 |
7727 |
16553 |
16067 |
947 |
1571 |
16007 |
16217 |
1193 |
16673 |
887 |
14717 |
2711 |
14633 |
8237 |
101 |
10301 |
15683 |
1493 |
4391 |
7691 |
16193 |
16127 |
14087 |
1913 |
13421 |
13121 |
17489 |
7817 |
11 |
2357 |
2903 |
6047 |
3191 |
15227 |
1721 |
3083 |
4751 |
1523 |
7457 |
1733 |
17387 |
13577 |
6221 |
15077 |
15671 |
16187 |
9323 |
17093 |
1847 |
1061 |
9791 |
2543 |
17183 |
2957 |
12413 |
16811 |
11351 |
2837 |
593 |
17231 |
13913 |
16481 |
17471 |
6323 |
557 |
7331 |
461 |
13337 |
5003 |
12161 |
17477 |
863 |
2333 |
4253 |
173 |
15881 |
17327 |
15017 |
14753 |
8747 |
2741 |
2477 |
167 |
1613 |
17321 |
13241 |
15161 |
16631 |
17 |
5333 |
12491 |
4157 |
17033 |
10163 |
16937 |
11171 |
23 |
1013 |
3581 |
263 |
16901 |
14657 |
6143 |
683 |
5081 |
14537 |
311 |
14951 |
7703 |
16433 |
15647 |
401 |
8171 |
1307 |
1823 |
2417 |
11273 |
3917 |
107 |
15761 |
10037 |
15971 |
12743 |
14411 |
15773 |
2267 |
14303 |
11447 |
14591 |
15137 |
17483 |
9677 |
5 |
4373 |
4073 |
15581 |
3407 |
1367 |
1301 |
9803 |
13103 |
16001 |
1811 |
7193 |
17393 |
9257 |
2861 |
14783 |
2777 |
16607 |
821 |
16301 |
1277 |
1487 |
15923 |
16547 |
1427 |
941 |
9767 |
15053 |
15287 |
2111 |
563 |
17027 |
It can be noticed that the order 7 Diamond Inlay of the square shown above contains an order 3 and an order 4 Diamond Inlay as well.
Attachment 20.8.2 shows one Prime Number
Associated Magic Square with Diamond Inlays for miscellaneous Magic Sums.
Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.
20.3 Summary
The obtained results regarding the miscellaneous Magic Squares with Diamond Inlays as deducted and discussed in previous sections are summarized in following table:
|