Vorige Pagina About the Author

' Generates Eccentric Magic Squares of order 7 for Prime Numbers
' Overlapping Sub Squares

' Tested with Office 2007 under Windows 7

Sub Priem7e()

    Dim a1(2448), a(64), a2(25), b1(43291), b(43291), c(64)

    y = MsgBox("Locked", vbCritical, "Routine Priem7e")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs7"
    ShtNm2 = "Solutions5"
    
    t1 = Timer

For j100 = 2 To 2349

'   Read Ultra Magic Square 5 x 5

    For i1 = 1 To 25
        a2(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
    Next i1
    MC5 = Sheets(ShtNm2).Cells(j100, 26).Value
    Rcrd7 = Sheets(ShtNm2).Cells(j100, 27).Value
    MC7 = 7 * MC5 / 5: Cntr7 = MC5 / 5
    
    GoSub 750   'Transform Ultra Magic Square

    GoSub 2000  'Read Pairs

    If MC7 <> s1 Then
        y = MsgBox("Conflict in Data", vbCritical, "Read Prime Numbers")
        End
    End If

'  Determine Semi Magic Square 3 x 3

   Erase b
   For i1 = 1 To 25
       b(a2(i1)) = a2(i1)
   Next i1

For j16 = m1 To m2                                              'a(16)
If b(a1(j16)) = 0 Then b(a1(j16)) = a1(j16): c(16) = a1(j16) Else GoTo 160
a(16) = a1(j16)

    a(15) = 2 * Cntr7 - a(16): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
     
For j10 = m1 To m2                                              'a(10)
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)

    a(9) = 2 * Cntr7 - 0.5 * a(10) - 0.5 * a(16)
    If a(9) < a1(m1) Or a(9) > a1(m2) Or Int(a(9)) <> a(9) Then GoTo 90
    If b1(a(9)) = 0 Then GoTo 90
    If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
    
    a(8) = 3 * Cntr7 - a(9) - a(10)
    If a(8) < a1(m1) Or a(8) > a1(m2) Then GoTo 80
    If b1(a(8)) = 0 Then GoTo 80
    If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
    
    a(3) = 2 * Cntr7 - a(10): If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    a(2) = 2 * Cntr7 - a(8): If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    a(1) = 2 * Cntr7 - a(9): If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10

'  Complete Square (Determine Pairs)

For j44 = m1 To m2                                              'a(44)
If b(a1(j44)) = 0 Then b(a1(j44)) = a1(j44): c(44) = a1(j44) Else GoTo 440
a(44) = a1(j44)
         
    a(43) = 2 * Cntr7 - a(44): If b(a(43)) = 0 Then b(a(43)) = a(43): c(43) = a(43) Else GoTo 430

For j37 = m1 To m2                                              'a(37)
If b(a1(j37)) = 0 Then b(a1(j37)) = a1(j37): c(37) = a1(j37) Else GoTo 370
a(37) = a1(j37)

    a(36) = 2 * Cntr7 - a(37): If b(a(36)) = 0 Then b(a(36)) = a(36): c(36) = a(36) Else GoTo 360
   
For j30 = m1 To m2                                              'a(30)
If b(a1(j30)) = 0 Then b(a1(j30)) = a1(j30): c(30) = a1(j30) Else GoTo 300
a(30) = a1(j30)
     
    a(29) = 2 * Cntr7 - a(30): If b(a(29)) = 0 Then b(a(29)) = a(29): c(29) = a(29) Else GoTo 290

    a(23) = 4 * Cntr7 - a(30) - a(37) - a(44)
    If a(23) < a1(m1) Or a(23) > a1(m2) Then GoTo 230
    If b1(a(23)) = 0 Then GoTo 230
    If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 230
    
    a(22) = 2 * Cntr7 - a(23): If b(a(22)) = 0 Then b(a(22)) = a(22): c(22) = a(22) Else GoTo 220

For j14 = m1 To m2                                              'a(14)
If b(a1(j14)) = 0 Then b(a1(j14)) = a1(j14): c(14) = a1(j14) Else GoTo 140
a(14) = a1(j14)

    a(13) = a(14) - a(37) + a(42) - a(43) + a(48)
    If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 130
    If b1(a(13)) = 0 Then GoTo 130
    If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
    
    a(7) = 2 * Cntr7 - a(14): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    a(6) = 2 * Cntr7 - a(13): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

For j12 = m1 To m2                                              'a(12)
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
a(12) = a1(j12)

    a(11) = 4 * Cntr7 - a(12) - a(13) - a(14)
    If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110
    If b1(a(11)) = 0 Then GoTo 110
    If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110
    
    a(5) = 2 * Cntr7 - a(12): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
    a(4) = 2 * Cntr7 - a(11): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40


               GoSub 850: If fl1 = 0 Then GoTo 35      'Back Check identical numbers a()
               n9 = n9 + 1: GoSub 2650                 'Print results (squares)
               Erase b1, b, c: GoTo 1000               'Print only first square
   
    
35  b(c(4)) = 0: c(4) = 0
40  b(c(5)) = 0: c(5) = 0
50  b(c(11)) = 0: c(11) = 0
110 b(c(12)) = 0: c(12) = 0
120 Next j12
    
    b(c(6)) = 0: c(6) = 0
60  b(c(7)) = 0: c(7) = 0
70  b(c(13)) = 0: c(13) = 0
130 b(c(14)) = 0: c(14) = 0
140 Next j14

    b(c(22)) = 0: c(22) = 0
220 b(c(23)) = 0: c(23) = 0
230 b(c(29)) = 0: c(29) = 0
290 b(c(30)) = 0: c(30) = 0
300 Next j30
   
    b(c(36)) = 0: c(36) = 0
360 b(c(37)) = 0: c(37) = 0
370 Next j37
   
    b(c(43)) = 0: c(43) = 0
430 b(c(44)) = 0: c(44) = 0
440 Next j44

    b(c(1)) = 0: c(1) = 0
10  b(c(2)) = 0: c(2) = 0
20  b(c(3)) = 0: c(3) = 0
30  b(c(8)) = 0: c(8) = 0
80  b(c(9)) = 0: c(9) = 0
90  b(c(10)) = 0: c(10) = 0
100 Next j10

    b(c(15)) = 0: c(15) = 0
150 b(c(16)) = 0: c(16) = 0
160 Next j16

1000 Next j100

    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine Priem7e")

End

'     Transform Ultra Magic Square

750   Erase a
      a(17) = a2(13): a(18) = a2(14): a(19) = a2(15): a(20) = a2(11): a(21) = a2(12):
      a(24) = a2(18): a(25) = a2(19): a(26) = a2(20): a(27) = a2(16): a(28) = a2(17):
      a(31) = a2(23): a(32) = a2(24): a(33) = a2(25): a(34) = a2(21): a(35) = a2(22):
      a(38) = a2(3):  a(39) = a2(4):  a(40) = a2(5):  a(41) = a2(1):  a(42) = a2(2):
      a(45) = a2(8):  a(46) = a2(9):  a(47) = a2(10): a(48) = a2(6):  a(49) = a2(7):

      Return
    
'     Back Check identical numbers a()

850   fl1 = 1
      For j1 = 1 To 49
         a20 = a(j1)
         For j2 = (1 + j1) To 49
             If a20 = a(j2) Then fl1 = 0: Return
         Next j2
      Next j1

      Return
    
'     Read Pairs
    
2000  s1 = Sheets(ShtNm1).Cells(Rcrd7, 3).Value       'MC7
      nVar = Sheets(ShtNm1).Cells(Rcrd7, 9).Value

      Erase b1
      For j1 = 1 To nVar
          x = Sheets(ShtNm1).Cells(Rcrd7, 9 + j1).Value
          b1(x) = x
      Next j1
      nMax = Sheets(ShtNm1).Cells(Rcrd7, 9 + nVar).Value

'     Remove used pairs from b1()

      For j1 = 1 To 25
          b1(a2(j1)) = 0
      Next j1

'     Restore available pairs in a1()

      n10 = 0
      For j1 = 1 To nMax
          If b1(j1) <> 0 Then
              n10 = n10 + 1
              a1(n10) = b1(j1)
          End If
      Next j1
      m1 = 1: m2 = n10
      If a1(1) = 1 Then m1 = 2: m2 = m2 - 1

      Return

'     Print results (squares)

2650  n5 = n5 + 1
      If n5 = 4 Then
          n5 = 1: k1 = k1 + 8: k2 = 1
      Else
          If n9 > 1 Then k2 = k2 + 8
      End If
     
      Cells(k1, k2 + 1).Select
      Cells(k1, k2 + 1).Font.Color = -4165632
      Cells(k1, k2 + 1).Value = "MC = " + CStr(s1)

      i3 = 0
      For i1 = 1 To 7
          For i2 = 1 To 7
              i3 = i3 + 1
              Cells(k1 + i1, k2 + i2).Value = a(i3)
          Next i2
      Next i1

      Return
     
End Sub

Vorige Pagina About the Author