Office Applications and Entertainment, Magic Squares | ||
![]() ![]() |
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.5 Magic Squares (7 x 7), Part I
Comparable routines as discussed in previous sections can be written to generate Prime Number Magic Squares of order 7,
however such routines are not very feasible due to the high number of independent variables,
e.g. 24 ea for Pan Magic Squares and 12 ea for Ultra Magic Squares.
14.5.1 Concentric Magic Squares (7 x 7)
A 7th order Prime Number Concentric Magic Square consists of a Prime Number Concentric Magic Square of the 5th order, as discussed in Section 14.3.2, with a border around it.
Based on the equations defining the border of a Concentric Magic Square (7 x 7): a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(36) = 2 * s1/7 - a(42) a(29) = 2 * s1/7 - a(35) a(22) = 2 * s1/7 - a(28) a(15) = 2 * s1/7 - a(21) a(14) = -3 * s1/7 + a(15) + a(22) + a(29) + a(36) + a(43) - a(49) a( 8) = 2 * s1/7 - a(14) a( 7) = 2 * s1/7 - a(43) a( 6) = 2 * s1/7 - a(48) a( 5) = 2 * s1/7 - a(47) a( 4) = 2 * s1/7 - a(46) a( 3) = 2 * s1/7 - a(45) a( 2) = 2 * s1/7 - a(44) a( 1) = 2 * s1/7 - a(49)
a routine can be written to generate Prime Number Concentric Magic Squares of order 7
(ref. Priem7a1).
Each square shown corresponds with numerous squares for the same Magic Sum, depending from the selected variable values {ai} and the related number of possible Embedded Magic Squares.
Note:
This results in following alternative border equations:
which enable the development of a much faster routine to generate Prime Number Concentric Magic Squares of order 7 (ref. Priem7a2).
14.5.2 Bordered Magic Squares (7 x 7) Based on the collections of 5th order Ultra Magic and Inlaid Magic Squares, as deducted in Section 14.3.5 thru 14.3.9, also following Bordered Magic Squares can be generated with routine Priem7a1:
Each square shown corresponds with numerous squares for the same Magic Sum, depending from the selected variable values {ai} and the related number of possible Center Squares.
14.5.3 Eccentric Magic Squares (7 x 7)
Based on the equations defining the supplementary rows and columns of an Eccentric Magic Square (7 x 7):
a(43) = 2 * s1/7 - a(44)
a(36) = 2 * s1/7 - a(37)
a(29) = 2 * s1/7 - a(30)
a(22) = 2 * s1/7 - a(23)
a(15) = 2 * s1/7 - a(16)
a(13) = 5 * s1/7 + a(14) - a(19) - a(25) - a(31) - a(37) - a(43)
a( 8) = -5 * s1/7 + a( 9) + a(16) + a(23) + a(30) + a(37) + a(44)
a( 9) = 6 * s1/7 - 0.5 * (a(10) + a(11) + a(12) + a(13) + a(14) + a(16) + a(23) + a(30) + a(37) + a(44))
a( 7) = 2 * s1/7 - a(14)
a( 6) = 2 * s1/7 - a(13)
a( 5) = 2 * s1/7 - a(12)
a( 4) = 2 * s1/7 - a(11)
a( 3) = 2 * s1/7 - a(10)
a( 2) = 2 * s1/7 - a( 8)
a( 1) = 2 * s1/7 - a( 9)
a routine can be written to generate Prime Number Eccentric Magic Squares of order 7
(ref. Priem7b).
Note:
These principles have been applied successfully in Section 14.8.5, Composed Magic Squares of order 13, for the completion of one of the Embedded Eccentric Magic Squares of order 7 (ref. PriemI7).
14.5.4 Eccentric Magic Squares, Overlapping Sub Squares
Prime Number Eccentric Magic Squares of order 7 with a Magic Sum s1 might contain:
as shown below.
A dedicated procedure (Priem7e) can be used:
Attachment 14.6.10 shows for miscellaneous Magic Sums the first occurring order 7 Prime Number Eccentric Magic Square with Overlapping Sub Squares.
14.5.5 Associated Magic Squares, Overlapping Sub Squares
Prime Number Magic Squares of order 7 with a Magic Sum s1 can also be composed out of:
as shown below.
Associated Magic Squares of order 7 can be constructed based on:
A (Semi) Magic Anti Symmetric Square of order n is a (Semi) Magic Square for which ai + aj ≠ 2 * sn / n for any i and j (i,j = 1 ... n2; i ≠ j).
Attachment 14.6.9b shows for miscellaneous Magic Sums the first occurring order 7 Prime Number Associated Magic Square with Overlapping Sub Squares.
14.5.6 Associated Magic Squares, Diamond Inlays Order 3 and 4
Based on the equations defining Associated Magic Squares (Diamond Inlays) of the seventh order: a(46) = 4 * s1/7 - a(40) - a(34) - a(28) a(45) = s1/7 + a(47) - 2 * a(27) + a(26) - a(20) + a(46) + a(40) - a(28) a(43) = s1 - a(44) - a(45) - a(47) - a(48) - a(49) - a(46) a(39) = 3 * s1/7 - a(33) - a(27) a(38) = a(20) - a(46) + a(28) a(37) = - 3 * s1/7 + a(41) - a(44) + a(48) + a(27) + a(20) + a(34) a(36) = s1 - 2 * a(41) - a(42) + a(44) - a(48) + a(33) - 2 * a(20) + a(46) - a(40) - a(34) - a(28) a(35) = (17 * s1/7 - 2 * a(41) - 2*a(42) - 2*a(47) - 2 * a(48) - 2 * a(49) - a(33) + 2 * a(20) - 2 * a(46) + - 2 * a(40) - 2 * a(34)) / 2 a(32) = 4 * s1/7 - a(26) - 2 * a(20) + a(46) - a(28) a(29) = 3 * s1/7 - a(35) - 2 * a(33) - 2 * a(27) + a(26) + 3 * a(20) - a(46) - a(34) + a(28) a(26) = 4 * s1/7 - a(20) - a(34) - a(28) a(25) = s1/7 a(19) = 4 * s1/7 - a(33) - 2 * a(27)
a routine can be written to generate subject Associated Magic Squares of order 7 (ref. Priem7e1).
14.5.7 Associated Magic Squares, Square Inlays Order 3 and 4
Based on the equations defining Associated Magic Squares (Square Inlays) of the seventh order: a(44) = s1 - a(46) - a(48) - a(43) - a(45) - a(47) - a(49) a(43) = 4 * s1/7 - a(45) - a(47) - a(49) a(37) = 3 * s1/7 - a(39) - a(41) a(36) = 4 * s1/7 - a(38) - a(40) - a(42) a(33) = 2 * s1/7 - a(35) + 0.5 * a(43) + 0.5 * a(45) - 0.5 * a(47) - 0.5 * a(49) a(32) = 6 * s1/7 - 2 * a(34) - a(46) - 2 * a(48) a(31) = a(33) - a(45) + a(47) a(30) = 3 * s1/7 - a(32) - a(34) a(29) = 4 * s1/7 - 2 * a(33) - a(35) + a(45) - a(47) a(28) = 5 * s1/7 - a(38) - a(40) - 2 * a(42) a(27) = 4 * s1/7 - a(39) - 2 * a(41) a(26) = s1/7 + a(38) - a(40) a(25) = s1/7
a routine can be written to generate subject Associated Magic Squares of order 7 (ref. Priem7e2).
14.5.8 Ultra Magic Squares (7 x 7)
Based on the equations defining an Associated Pan Magic Square (Ultra Magic) of the seventh order: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(36) = s1 - a(37) - a(38) - a(39) - a(40) - a(41) - a(42) a(35) = 6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = a(35) + a(37) - a(40) + a(44) + a(45) - a(46) - a(48) a(33) = 6 * s1/7 + a(38) - a(39) - a(40) - a(41) + a(44) - 2 * a(47) - a(48) - a(49) a(32) = 6 * s1/7 - a(38) - a(40) - a(44) - a(46) - a(48) a(31) = 12 * s1/7 - a(33) - a(37) - 2 * a(39) - a(41) - a(43) - 2 * a(45) - 2 * a(47) - a(49) a(30) = - 8 * s1/7 + a(39) + a(40) + 2 * a(41) + a(42) - a(44) + 2 * a(47) + 2 * a(48) + a(49) a(29) = - 8 * s1/7 + a(38) + a(39) + a(40) + a(41) + a(42) + a(46) + a(47) + a(48) + a(49) a(28) = s1/7 - a(37) + a(41) - a(44) - a(45) + a(47) + a(48) a(27) = -13 * s1/7 + a(39) + 2*a(40) + 2*a(41) + 2*a(42) - a(44) - a(45) + a(46) + 3*a(47) + 3*a(48) + 2*a(49) a(26) = a(27) + a(36) - a(42) + a(45) - a(47) a(25) = s1/7
a routine can be written to generate Ultra Magic Squares of order 7 (ref. Priem7c).
14.5.9 Ultra Magic Squares, Order 3 Concentric Square and Square Inlay (a)
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Concentric Square and Square Inlay (a): a(45) = ( s1 - 2 * a(48) - a(32) - 2 * a(33)) / 2 a(44) = 4 * s1/7 - a(45) - a(47) - a(48) a(43) = 3 * s1/7 - a(46) - a(49) a(40) = (9 * s1/7 - 2 * a(48) - 2 * a(32) - 2 * a(33) - a(46)) / 2 a(39) = 3 * s1/7 - a(41) - 2 * a(47) + a(32) + a(33) - a(49) a(38) = - s1 + a(40) + a(45) + a(47) + 2 * a(48) + a(32) + 2 * a(33) a(37) = - s1 + a(41) + 2 * a(47) + 2 * a(48) + a(46) + 2 * a(49) a(36) = 9 * s1/7 - a(41) - a(42) - a(45) - a(47) - 2 * a(48) - a(33) - a(49) a(35) = 6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = 3 * s1/7 - a(40) - a(42) - a(48) + a(49) a(31) = 3 * s1/7 - a(32) - a(33) a(30) = -9 * s1/7 + a(40) + a(41) + a(42) + a(45) + a(47) + 3 * a(48) + a(32) + a(33) a(29) = -3 * s1/7 + a(42) + a(45) + a(48) + a(33) a(28) = 4 * s1/7 - a(46) - 2 * a(49) a(27) = -5 * s1/7 + a(41) + 2 * a(42) + 2 * a(47) + 2 * a(48) - a(32) - a(33) + a(49) a(26) = 4 * s1/7 - a(32) - 2 * a(33) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7f1).
14.5.10 Ultra Magic Squares, Order 3 Concentric Square and Square Inlay (b)
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Concentric Square and Square Inlay (b): a(46) = s1 - 2 * a(48) - a(49) - a(32) - a(33) - a(41) a(44) = -6 * s1/7 + a(45) + a(47) + a(48) + a(49) + a(33) + a(39) + a(41) a(43) = 6 * s1/7 - 2 * a(45) - 2 * a(47) - a(49) + a(32) - a(39) a(42) = (- s1/7 + 2 * a(45) + a(32) + 2 * a(33) - 2 * a(41))/2 a(40) = ( 5 * s1/7 - 2 * a(47) - a(39))/2 a(38) = a(40) - a(45) + a(47) a(37) = 3 * s1/7 - a(39) - a(41) a(36) = - s1/7 - a(42) + a(45) + a(47) + a(39) a(35) = 6 * s1/7 - a(42) - a(47) - a(48) - a(49) - a(41) a(34) = 3 * s1/7 - a(35) - a(40) - a(47) + a(41) a(31) = 3 * s1/7 - a(32) - a(33) a(30) = -3 * s1/7 - a(36) + a(38) + a(45) + a(47) + a(48) - a(33) + a(39) + a(41) a(29) = 4 * s1/7 - a(30) - a(34) - a(35) a(28) = 4 * s1/7 - 2 * a(45) - a(49) - a(33) + a(41) a(27) = 4 * s1/7 - a(39) - 2 * a(41) a(26) = 4 * s1/7 - a(32) - 2 * a(33) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7f2).
14.5.11 Ultra Magic Squares, Order 3 Square Inlays
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Square Inlays: a(47) = (10 * s1/7 - 2 * a(48) - a(39) - 2 * a(41) - a(46) - 2 * a(49))/2 a(44) = 4 * s1/7 - a(45) - a(47) - a(48) a(43) = 3 * s1/7 - a(46) - a(49) a(40) = ( s1/7 - 2 * a(42) + a(46) + 2 * a(49))/2 a(37) = 3 * s1/7 - a(39) - a(41) a(36) = 4 * s1/7 - a(38) - a(40) - a(42) a(35) = 6 * s1/7 - a(42) - a(47) - a(48) - a(41) - a(49) a(34) = 3 * s1/7 - a(40) - a(42) - a(48) + a(49) a(33) = a(38) - a(40) - a(45) - a(47) + a(41) + a(46) + a(49) a(32) = s1/7 - a(38) + a(40) + 2 * a(42) + a(45) + a(47) - 2 * a(46) - 2 * a(49) a(31) = - 4 * s1/7 - a(38) + a(40) - a(45) + a(47) + 2 * a(48) + a(41) + a(46) + a(49) a(30) = - 2 * s1/7 + a(40) + a(42) + a(45) + a(47) + a(48) - a(46) - a(49) a(29) = 3 * s1/7 + a(38) - a(40) - a(42) - a(47) - a(48) - a(41) + a(46) + a(49) a(28) = 4 * s1/7 - a(46) - 2 * a(49) a(27) = 4 * s1/7 - a(39) - 2 * a(41) a(26) = 8 * s1/7 - a(38) - a(40) - 2 * a(42) + a(45) - a(47) - a(39) - 2 * a(41) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7e5).
14.5.12 Ultra Magic Squares, Order 3 Square and Diamond Inlay (a)
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Square and Diamond Inlay: a(44) = 4 * s1/7 - a(45) - a(47) - a(48) a(43) = 3 * s1/7 - a(46) - a(49) a(41) = 6 * s1/7 - a(45) - 2 * a(47) - a(48) - a(49) a(40) = 4 * s1/7 - a(42) + a(45) - a(48) - a(39) - (a(33) + a(46))/2 a(37) = - s1/7 - a(45) + a(48) + a(46) + a(49) a(38) = - a(42) + a(45) + a(47) + (a(33) - a(46))/2 a(36) = - 2 * s1/7 + a(42) + a(47) + a(48) a(35) = - a(42) + a(45) + a(47) a(34) = - s1/7 - a(45) + a(39) + a(49) + (a(33) + a(46))/2 a(32) = - 2 * s1/7 + 2 * a(42) - a(45) + a(48) + a(39) a(31) = 4 * s1/7 - a(33) - 2 * a(39) a(30) = 4 * s1/7 - a(47) - a(49) - (a(33) + a(46))/2 a(29) = 2 * s1/7 - a(42) + a(45) - a(48) a(28) = 4 * s1/7 - a(46) - 2 * a(49) a(27) = 3 * s1/7 - a(33) - a(39) a(26) = s1/7 + a(45) + a(48) - a(33) - a(39) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7g1).
14.5.13 Ultra Magic Squares, Order 3 Square and Diamond Inlay (b)
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Square and Diamond Inlay: a(44) = 2 * s1/7 + a(45) - a(46) + a(47) - a(48) - a(39) a(43) = 5 * s1/7 - 2 * a(45) - 2 * a(47) - a(49) + a(39) a(40) = (19 * s1/7 - 2 * a(42) + 2 * a(45) - 2 * a(46) - 2*a(47) - 4*a(48) - 2*a(49) - 3*a(39) - 4*a(41))/2 a(38) = ( s1/7 - 2 * a(42) + a(39) + 2 * a(41))/2 a(37) = 3 * s1/7 - a(39) - a(41) a(36) = - 6 * s1/7 + a(42) - a(45) + a(46) + a(47) + 2 * a(48) + a(49) + a(39) + a(41) a(35) = 6 * s1/7 - a(42) - a(47) - a(48) - a(49) - a(41) a(34) = 2 * s1/7 - a(38) - a(42) + a(45) - a(46) + a(47) - a(48) + a(41) a(33) = - s1/7 + 2 * a(41) a(32) = - 6 * s1/7 + 2 * a(42) - 2 * a(45) + a(46) + 2 * a(48) + a(49) + 2 * a(39) + a(41) a(31) = 5 * s1/7 - 2 * a(39) - 2 * a(41) a(30) = - s1/7 + a(38) + a(42) + a(48) - a(41) a(29) = 2 * s1/7 - a(42) + a(45) - a(48) a(28) = - 4 * s1/7 - 2 * a(45) + a(46) + 2 * a(48) + 2 * a(39) + 2 * a(41) a(27) = 4 * s1/7 - a(39) - 2 * a(41) a(26) = - 2 * s1/7 + a(46) + 2 * a(48) + a(49) - a(41) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7g2).
14.5.14 Ultra Magic Squares, Order 3 Concentric Square and Diamond Inlay
Based on the equations defining seventh order Ultra Magic Squares with Order 3 Concentric Square and Diamond Inlay: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(42) = (-3 * s1/7 + 2 * a(45) + a(33) + 2 * a(39))/2 a(41) = 6 * s1/7 + a(44) - a(45) - a(47) - a(48) - a(49) - a(33) - a(39) a(40) = ( s1 - a(44) + a(45) - a(46) - a(47) - a(48) - 2 * a(39))/2 a(38) = a(40) - a(45) + a(47) a(37) = - 5 * s1/7 + a(46) + 2 * a(48) + a(49) + a(33) + a(39) a(36) = ( s1/7 + 2 * a(47) - a(33)) / 2 a(35) = 3 * s1/7 + a(42) - a(44) - a(45) - a(39) a(34) = - 2 * s1/7 - a(40) + a(42) + a(48) + a(49) + a(33) a(32) = - s1/7 + 2 * a(39) a(31) = 4 * s1/7 - a(33) - 2 * a(39) a(30) = 8 * s1/7 - a(40) - a(42) + a(45) - a(46) - a(47) - a(48) - a(49) - a(33) - a(39) a(29) = ( s1 - 2 * a(48) - a(33) - 2 * a(39))/2 a(28) = 12 * s1/7 - 2 * a(45) - a(46) - 2 * a(48) - 2 * a(49) - 2 * a(33) - 2 * a(39) a(27) = 3 * s1/7 - a(33) - a(39) a(26) = 5 * s1/7 - 2 * a(33) - 2 * a(39) a(25) = s1/7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7h).
14.5.15 Ultra Magic Squares, Three Cell Patterns
Based on the equations defining seventh order Ultra Magic Squares, for which all Three Cell patterns sum to 3*s1/7: a(33) = 3*s1 / 7 - a(34) - a(40) a(30) = 3*s1 / 7 - a(31) - a(38) a(46) = -2*s1 / 7 + a(31) + 2 * a(38) a(32) = 5*s1 / 7 - a(39) - a(31) - 2 * a(38) a(28) = s1 / 7 + a(34) - a(40) a(26) = 2*s1 / 7 - a(27) - a(34) + a(40) a(47) = 3*s1 / 7 - a(48) - a(49) a(45) = 7*s1 / 7 - a(48) - a(49) - a(27) - a(31) - a(38) - 2 * a(34) + a(40) a(44) = 3*s1 / 7 - a(48) + a(39) - a(38) - a(40) a(43) = -4*s1 / 7 + 2 * a(48) + a(49) + a(27) - a(39) + 2 * a(34) a(42) = 8*s1 / 7 - a(48) - a(49) - a(31) - 2 * a(38) - 2 * a(34) a(41) = a(49) + a(34) - a(40) a(37) = -7*s1 / 7 + 2 * a(48) + a(49) + a(27) - a(39) + a(31) + 2 * a(38) + 2 * a(34) a(36) = 6*s1 / 7 - a(48) - a(49) - a(27) - a(38) - a(34) a(35) = -5*s1 / 7 + a(48) + a(31) + 2 * a(38) + a(34) + a(40) a(29) = s1 / 7 - a(48) + a(39) + a(38) - a(34) a(25) = s1 / 7
a routine can be written to generate subject Ultra Magic Squares of order 7 (ref. Priem7d).
The obtained results regarding the miscellaneous types of order 7 Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
Concentric
-
Bordered
Miscellaneous Inlays
Eccentric
General
Overlapping Sub Squares
Associated
Overlapping Sub Squares (4 x 4)
Diamond Inlays Order 3 and 4
Square Inlays Order 3 and 4
Ultra Magic
General
Concentric, Square Inlay (a)
Concentric, Square Inlay (b)
Order 3 Square Inlays
Order 3 Square and Diamond Inlay (a)
Order 3 Square and Diamond Inlay (b)
Concentric, Diamond Inlay
Three Cell Patterns
Comparable routines as listed above, can be used to generate Prime Number Magic Squares of order 8, which will be described in following sections.
|
![]() ![]() |
Index | About the Author |