' Generates Ultra Magic Squares of order 7 for Prime Numbers
' Order 3 Concentric Square and Square Inlay (b)
' Tested with Office 2007 under Windows 7
Sub Priem7f2()
Dim a1(2448), a(49), b1(43291), b(43291), c(49)
y = MsgBox("Locked", vbCritical, "Routine Priem7f2")
End
n2 = 0: n3 = 0: n9 = 0: k1 = 1: k2 = 1
ShtNm1 = "Pairs7": rno11 = 409: rno12 = 409: ShtNm3 = "Klad1": fl10 = 2
' Generate squares
Sheets(ShtNm3).Select
t1 = Timer
If fl10 = 1 Then rno11 = 1: rno12 = 1
For j100 = rno11 To rno12
' Define variables
If fl10 = 1 Then GoSub 2000 ' Read Natural Numbers (j100 = 1 To 1)
If fl10 = 2 Then GoSub 2010 ' Read Prime Numbers From sheet "Pairs7" (j100: As selected)
If fl10 = 3 Then GoSub 2020 ' Read Prime Numbers from sheet "Lines7" (j100: As selected)
Cells(k1, 1).Select: Cells(k1, 1).Value = s1
a(25) = s2: b(s2) = s2
For j33 = m1 To (m2 - 1) / 2 'a(33) Concentric
If b(a1(j33)) = 0 Then b(a1(j33)) = a1(j33): c(33) = a1(j33) Else GoTo 330
a(33) = a1(j33)
a(17) = 2 * s2 - a(33): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 170
For j32 = m1 To m2 'a(32) Concentric
If b(a1(j32)) = 0 Then b(a1(j32)) = a1(j32): c(32) = a1(j32) Else GoTo 320
a(32) = a1(j32)
a(31) = 3 * s2 - a(32) - a(33)
If a(31) < a1(m1) Or a(31) > a1(m2) Then GoTo 310
If b1(a(31)) = 0 Then GoTo 310
If b(a(31)) = 0 Then b(a(31)) = a(31): c(31) = a(31) Else GoTo 310
a(26) = 4 * s2 - a(32) - 2 * a(33)
If a(26) < a1(m1) Or a(26) > a1(m2) Then GoTo 260
If b1(a(26)) = 0 Then GoTo 260
If b(a(26)) = 0 Then b(a(26)) = a(26): c(26) = a(26) Else GoTo 260
a(24) = 2 * s2 - a(26): If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 240
a(19) = 2 * s2 - a(31): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 190
a(18) = 2 * s2 - a(32): If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 180
For j41 = m1 To m2 'a(41) Sqr Inlay 3
If b(a1(j41)) = 0 Then b(a1(j41)) = a1(j41): c(41) = a1(j41) Else GoTo 410
a(41) = a1(j41)
a(9) = 2 * s2 - a(41): If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
For j39 = m1 To m2 'a(39) Sqr Inlay 3
If b(a1(j39)) = 0 Then b(a1(j39)) = a1(j39): c(39) = a1(j39) Else GoTo 390
a(39) = a1(j39)
a(37) = 3 * s2 - a(39) - a(41)
If a(37) < a1(m1) Or a(37) > a1(m2) Then GoTo 370
If b1(a(37)) = 0 Then GoTo 370
If b(a(37)) = 0 Then b(a(37)) = a(37): c(37) = a(37) Else GoTo 370
a(27) = 4 * s2 - a(39) - 2 * a(41)
If a(27) < a1(m1) Or a(27) > a1(m2) Then GoTo 270
If b1(a(27)) = 0 Then GoTo 270
If b(a(27)) = 0 Then b(a(27)) = a(27): c(27) = a(27) Else GoTo 270
a(23) = 2 * s2 - a(27): If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 230
a(13) = 2 * s2 - a(37): If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
a(11) = 2 * s2 - a(39): If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110
For j49 = m1 To m2 'a(49) Remainder
If b(a1(j49)) = 0 Then b(a1(j49)) = a1(j49): c(49) = a1(j49) Else GoTo 490
a(49) = a1(j49)
a(1) = 2 * s2 - a(49): If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
For j48 = m1 To m2 'a(48) Remainder
If b(a1(j48)) = 0 Then b(a1(j48)) = a1(j48): c(48) = a1(j48) Else GoTo 480
a(48) = a1(j48)
a(46) = s1 - 2 * a(48) - a(49) - a(32) - a(33) - a(41)
If a(46) < a1(m1) Or a(46) > a1(m2) Or CInt(a(46)) <> a(46) Then GoTo 460
If b1(a(46)) = 0 Then GoTo 460
If b(a(46)) = 0 Then b(a(46)) = a(46): c(46) = a(46) Else GoTo 460
a(4) = 2 * s2 - a(46): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
a(2) = 2 * s2 - a(48): If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
For j47 = m1 To m2 'a(47) Remainder
If b(a1(j47)) = 0 Then b(a1(j47)) = a1(j47): c(47) = a1(j47) Else GoTo 470
a(47) = a1(j47)
a(40) = (5 * s2 - 2 * a(47) - a(39)) / 2
If a(40) < a1(m1) Or a(40) > a1(m2) Or CInt(a(40)) <> a(40) Then GoTo 400
If b1(a(40)) = 0 Then GoTo 400
If b(a(40)) = 0 Then b(a(40)) = a(40): c(40) = a(40) Else GoTo 400
a(10) = 2 * s2 - a(40): If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100
a(3) = 2 * s2 - a(47): If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
For j45 = m1 To m2 'a(45) Remainder
If b(a1(j45)) = 0 Then b(a1(j45)) = a1(j45): c(45) = a1(j45) Else GoTo 450
a(45) = a1(j45)
a(44) = -6 * s2 + a(45) + a(47) + a(48) + a(49) + a(33) + a(39) + a(41)
If a(44) < a1(m1) Or a(44) > a1(m2) Then GoTo 440
If b1(a(44)) = 0 Then GoTo 440
If b(a(44)) = 0 Then b(a(44)) = a(44): c(44) = a(44) Else GoTo 440
a(43) = 6 * s2 - 2 * a(45) - 2 * a(47) - a(49) + a(32) - a(39)
If a(43) < a1(m1) Or a(43) > a1(m2) Then GoTo 430
If b1(a(43)) = 0 Then GoTo 430
If b(a(43)) = 0 Then b(a(43)) = a(43): c(43) = a(43) Else GoTo 430
a(42) = (-s2 + 2 * a(45) + a(32) + 2 * a(33) - 2 * a(41)) / 2
If a(42) < a1(m1) Or a(42) > a1(m2) Or CInt(a(42)) <> a(42) Then GoTo 420
If b1(a(42)) = 0 Then GoTo 420
If b(a(42)) = 0 Then b(a(42)) = a(42): c(42) = a(42) Else GoTo 420
a(38) = a(40) - a(45) + a(47)
If a(38) < a1(m1) Or a(38) > a1(m2) Then GoTo 380
If b1(a(38)) = 0 Then GoTo 380
If b(a(38)) = 0 Then b(a(38)) = a(38): c(38) = a(38) Else GoTo 380
a(36) = -s2 - a(42) + a(45) + a(47) + a(39)
If a(36) < a1(m1) Or a(36) > a1(m2) Then GoTo 360
If b1(a(36)) = 0 Then GoTo 360
If b(a(36)) = 0 Then b(a(36)) = a(36): c(36) = a(36) Else GoTo 360
a(35) = 6 * s2 - a(42) - a(47) - a(48) - a(49) - a(41)
If a(35) < a1(m1) Or a(35) > a1(m2) Then GoTo 350
If b1(a(35)) = 0 Then GoTo 350
If b(a(35)) = 0 Then b(a(35)) = a(35): c(35) = a(35) Else GoTo 350
a(34) = 3 * s2 - a(35) - a(40) - a(47) + a(41)
If a(34) < a1(m1) Or a(34) > a1(m2) Then GoTo 340
If b1(a(34)) = 0 Then GoTo 340
If b(a(34)) = 0 Then b(a(34)) = a(34): c(34) = a(34) Else GoTo 340
a(30) = -3 * s2 - a(36) + a(38) + a(45) + a(47) + a(48) - a(33) + a(39) + a(41)
If a(30) < a1(m1) Or a(30) > a1(m2) Then GoTo 300
If b1(a(30)) = 0 Then GoTo 300
If b(a(30)) = 0 Then b(a(30)) = a(30): c(30) = a(30) Else GoTo 300
a(29) = 4 * s2 - a(30) - a(34) - a(35)
If a(29) < a1(m1) Or a(29) > a1(m2) Then GoTo 290
If b1(a(29)) = 0 Then GoTo 290
If b(a(29)) = 0 Then b(a(29)) = a(29): c(29) = a(29) Else GoTo 290
a(28) = 4 * s2 - 2 * a(45) - a(49) - a(33) + a(41)
If a(28) < a1(m1) Or a(28) > a1(m2) Then GoTo 280
If b1(a(28)) = 0 Then GoTo 280
If b(a(28)) = 0 Then b(a(28)) = a(28): c(28) = a(28) Else GoTo 280
a(22) = 2 * s2 - a(28): If b(a(22)) = 0 Then b(a(22)) = a(22): c(22) = a(22) Else GoTo 220
a(21) = 2 * s2 - a(29): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210
a(20) = 2 * s2 - a(30): If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 200
a(16) = 2 * s2 - a(34): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160
a(15) = 2 * s2 - a(35): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
a(14) = 2 * s2 - a(36): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140
a(12) = 2 * s2 - a(38): If b(a(12)) = 0 Then b(a(12)) = a(12): c(12) = a(12) Else GoTo 120
a(8) = 2 * s2 - a(42): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
a(7) = 2 * s2 - a(43): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
a(6) = 2 * s2 - a(44): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
a(5) = 2 * s2 - a(45): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
' n9 = n9 + 1: GoSub 645 'Print results (selected numbers)
n9 = n9 + 1: GoSub 650 'Print results (squares)
Erase b, c: GoTo 1000 'Print only first square
b(c(5)) = 0: c(5) = 0
50 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 b(c(12)) = 0: c(12) = 0
120 b(c(14)) = 0: c(14) = 0
140 b(c(15)) = 0: c(15) = 0
150 b(c(16)) = 0: c(16) = 0
160 b(c(20)) = 0: c(20) = 0
200 b(c(21)) = 0: c(21) = 0
210 b(c(22)) = 0: c(22) = 0
220 b(c(28)) = 0: c(28) = 0
280 b(c(29)) = 0: c(29) = 0
290 b(c(30)) = 0: c(30) = 0
300 b(c(34)) = 0: c(34) = 0
340 b(c(35)) = 0: c(35) = 0
350 b(c(36)) = 0: c(36) = 0
360 b(c(38)) = 0: c(38) = 0
380 b(c(42)) = 0: c(42) = 0
420 b(c(43)) = 0: c(43) = 0
430 b(c(44)) = 0: c(44) = 0
440 b(c(45)) = 0: c(45) = 0
450 Next j45
b(c(3)) = 0: c(3) = 0
30 b(c(10)) = 0: c(10) = 0
100 b(c(40)) = 0: c(40) = 0
400 b(c(47)) = 0: c(47) = 0
470 Next j47
b(c(2)) = 0: c(2) = 0
20 b(c(4)) = 0: c(4) = 0
40 b(c(46)) = 0: c(46) = 0
460 b(c(48)) = 0: c(48) = 0
480 Next j48
b(c(1)) = 0: c(1) = 0
10 b(c(49)) = 0: c(49) = 0
490 Next j49
b(c(11)) = 0: c(11) = 0
110 b(c(13)) = 0: c(13) = 0
130 b(c(23)) = 0: c(23) = 0
230 b(c(27)) = 0: c(27) = 0
270 b(c(37)) = 0: c(37) = 0
370 b(c(39)) = 0: c(39) = 0
390 Next j39
b(c(9)) = 0: c(9) = 0
90 b(c(41)) = 0: c(41) = 0
410 Next j41
b(c(18)) = 0: c(18) = 0
180 b(c(19)) = 0: c(19) = 0
190 b(c(24)) = 0: c(24) = 0
240 b(c(26)) = 0: c(26) = 0
260 b(c(31)) = 0: c(31) = 0
310 b(c(32)) = 0: c(32) = 0
320 Next j32
b(c(17)) = 0: c(17) = 0
170 b(c(33)) = 0: c(33) = 0
330 Next j33
1000 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
y = MsgBox(t10, 0, "Routine Priem7f2")
End
' Print results (selected numbers)
645 For i1 = 1 To 49
Cells(n9, i1).Value = a(i1)
Next i1
Return
' Print results (squares)
650 n2 = n2 + 1
If n2 = 4 Then
n2 = 1: k1 = k1 + 8: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 8
End If
Cells(k1 + 1, k2 + 1).Select
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = s1 ''n9
i3 = 0
For i1 = 1 To 7
For i2 = 1 To 7
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a(i3)
Next i2
Next i1
Return
' Read Natural Numbers
2000 m1 = 1: m2 = 49: s1 = 175: s2 = 25
For i1 = m1 To m2
a1(i1) = i1
Next i1
Erase b1
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
Return
' Read Prime Numbers From sheet ShtNm1 (e.g. "Pairs7")
2010 s1 = Sheets(ShtNm1).Cells(j100, 3).Value ' MC7
s2 = s1 / 7
nVar1 = Sheets(ShtNm1).Cells(j100, 9).Value
For i1 = 1 To nVar1
a1(i1) = Sheets(ShtNm1).Cells(j100, 9 + i1).Value
Next i1
m1 = 1: m2 = nVar1
Erase b1, b, c
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
Return
' Read Prime Numbers from sheet ShtNm1 (e.g. "Lines7")
2020 m1 = 1: m2 = 49
s1 = Sheets(ShtNm1).Cells(j100, m2 + 1).Value 'Lines7 contains likely sequences
s2 = s1 / 7
a2 = 0
For i1 = m1 To m2
a1(i1) = Sheets(ShtNm1).Cells(j100, i1).Value
If a2 < a1(i1) Then a2 = a1(i1) 'Determine Maximum
Next i1
Erase b1, b, c
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
n1 = 0: Erase a1 'Sort a1
For i1 = 1 To a2
If b1(i1) <> 0 Then
n1 = n1 + 1
a1(n1) = b1(i1)
End If
Next i1
Return
End Sub