Vorige Pagina Volgende Pagina About the Author

' Constructs Prime Number Composed Magic Squares of Order 11

' Tested with Office 2007 under Windows 7

Sub PriemE11()

     Dim a1(2448), a(64), a15(225), b1(43300), b(43300), c(64), Crnr3(2)

     y = MsgBox("Locked", vbCritical, "Routine PriemE11")
     End

     Sheets("Klad1").Select

     n5 = 0: n9 = 0: k1 = 1: k2 = 1
     ShtNm1 = "Pairs7"

     t1 = Timer
   
     For j100 = 543 To 2221

'    Read Prime Numbers From Sheet ShtNm1

     Rcrd1a = j100
     Pr3 = Sheets(ShtNm1).Cells(j100, 1).Value     'PairSum
     Cntr3 = Sheets(ShtNm1).Cells(j100, 6).Value   'Center
     s3 = 3 * Cntr3                                'MC3
     s4 = 2 * Pr3                                  'MC4
     s5 = 5 * Cntr3                                'MC5
     s7 = 7 * Cntr3                                'MC7
     s15 = 15 * Cntr3                              'MC11
     nVar = Sheets(ShtNm1).Cells(j100, 9).Value
     m1 = 1: m2 = nVar
   
     If nVar < 225 Then GoTo 1000                 'For Study 15 x 15
   
     For i1 = m1 To m2
         a1(i1) = Sheets(ShtNm1).Cells(j100, i1 + 9).Value
     Next i1
     If a1(1) = 1 Then m1 = m1 + 1: m2 = m2 - 1

     Erase b1
     For i1 = m1 To m2
         b1(a1(i1)) = a1(i1)
     Next i1
     
     Erase a

'    Determine Center Square (3 x 3)

     Phase1 = 1
     GoSub 3000: If fl1 = 0 Then GoTo 1000

'    Store in a15()

     a15(97) = a(1):  a15(98) = a(2):  a15(99) = a(3):
     a15(112) = a(4): a15(113) = a(5): a15(114) = a(6):
     a15(127) = a(7): a15(128) = a(8): a15(129) = a(9):

     n32 = 9: GoSub 900                                 'Remove used primes from available primes

'    Complete  Eccentrc Squares A1/2 (5 x 5)

     Crnr3(1) = a15(99)                                 'Square 1
     Crnr3(2) = a15(127)                                'Square 2

     i35 = 1
     For n10 = 1 To 2
        
         Erase a, b, c
         GoSub 5000: If fl1 = 0 Then GoTo 1000
        
         Select Case n10
           
               Case 1:
                    
                    a15(67) = a(1): a15(68) = a(6): a15(69) = a(9):  a15(70) = a(10): a15(71) = a(11):
                    a15(82) = a(5): a15(83) = a(2): a15(84) = a(12): a15(85) = a(13): a15(86) = a(14):
                                                                     a15(100) = a(16): a15(101) = a(15):
                                                                     a15(115) = a(3):  a15(116) = a(7):
                                                                     a15(130) = a(8):  a15(131) = a(4):
                    
                    n32 = 16: GoSub 900                 'Remove used primes from available primes
                    i35 = 2
                   
               Case 2:
       
                    a15(95) = a(4):   a15(96) = a(8):
                    a15(110) = a(7):  a15(111) = a(3):
                    a15(125) = a(15): a15(126) = a(16):
                    a15(140) = a(14): a15(141) = a(13): a15(142) = a(12): a15(143) = a(2): a15(144) = a(5):
                    a15(155) = a(11): a15(156) = a(10): a15(157) = a(9):  a15(158) = a(6): a15(159) = a(1):
             
                    n32 = 16: GoSub 900                 'Remove used primes from available primes
                    
          End Select
        
     Next n10
     
'    Complete  Eccentrc Squares B1/2 (7 x 7)

     Crnr3(1) = a15(69) + a15(85) + a15(101)   ' Square 1
     Crnr3(2) = a15(125) + a15(141) + a15(157) ' Square 2

     i35 = 1: Phase1 = 2
     For n10 = 1 To 2
        
          Erase a, b, c
          GoSub 3000: If fl1 = 0 Then GoTo 1000
          GoSub 7000: If fl1 = 0 Then GoTo 1000
        
          Select Case n10
           
               Case 1:
                    
                    a15(37) = a(10): a15(38) = a(15): a15(39) = a(18): a15(40) = a(20): a15(41) = a(8): a15(42) = a(9):   a15(43) = a(7):
                    a15(52) = a(14): a15(53) = a(11): a15(54) = a(19): a15(55) = a(21): a15(56) = a(2): a15(57) = a(3):   a15(58) = a(1):
                                                                                                        a15(72) = a(6):   a15(73) = a(4):
                                                                                                        a15(87) = a(25):  a15(88) = a(24):
                                                                                                        a15(102) = a(23): a15(103) = a(22):
                                                                                                        a15(117) = a(12): a15(118) = a(16):
                                                                                                        a15(132) = a(17): a15(133) = a(13):
                    
                    n32 = 25: GoSub 900                 'Remove used primes from available primes
                    i35 = 2
                   
               Case 2:
       
                    a15(93) = a(13):  a15(94) = a(17):
                    a15(108) = a(16): a15(109) = a(12):
                    a15(123) = a(22): a15(124) = a(23):
                    a15(138) = a(24): a15(139) = a(25):
                    a15(153) = a(4):  a15(154) = a(6):
                    a15(168) = a(1):  a15(169) = a(3): a15(170) = a(2): a15(171) = a(21): a15(172) = a(19): a15(173) = a(11): a15(174) = a(14):
                    a15(183) = a(7):  a15(184) = a(9): a15(185) = a(8): a15(186) = a(20): a15(187) = a(18): a15(188) = a(15): a15(189) = a(10):
                        
                    n32 = 25: GoSub 900                 'Remove used primes from available primes
             
          End Select
        
     Next n10
    
'    Generate Pan Magic Squares Pm1/2 ( 4  x 4)
'    Complete Composed Magic Square E (11 x 11)
             
     For n10 = 1 To 2
        
          Erase a, b, c
          GoSub 4000: If fl1 = 0 Then GoTo 1000
        
          Select Case n10
           
               Case 1:
                              
                    a15(33) = a(1):  a15(34) = a(2):  a15(35) = a(3):  a15(36) = a(4):
                    a15(48) = a(5):  a15(49) = a(6):  a15(50) = a(7):  a15(51) = a(8):
                    a15(63) = a(9):  a15(64) = a(10): a15(65) = a(11): a15(66) = a(12):
                    a15(78) = a(13): a15(79) = a(14): a15(80) = a(15): a15(81) = a(16):
                    
                    n32 = 16: GoSub 900                 'Remove used primes from available primes
                    i35 = 2
                   
               Case 2:
                             
                    a15(145) = a(1):  a15(146) = a(2):  a15(147) = a(3):  a15(148) = a(4):
                    a15(160) = a(5):  a15(161) = a(6):  a15(162) = a(7):  a15(163) = a(8):
                    a15(175) = a(9):  a15(176) = a(10): a15(177) = a(11): a15(178) = a(12):
                    a15(190) = a(13): a15(191) = a(14): a15(192) = a(15): a15(193) = a(16):
             
          End Select
        
     Next n10

500
             GoSub 850                                  'Double Check Identical Integers
             If fl1 = 1 Then
                n9 = n9 + 1: GoSub 1650                 'Print results (squares)
'               n9 = n9 + 1: GoSub 1640                 'Print results (lines)
                If n9 = 24 Then End                    ' *** Test ***
             End If
    
1000 Erase b1, b, c
     Next j100
    
    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine PriemE11")
    
End

'       Determine Magic Square Order 3

3000 fl1 = 1

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 3090
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 3090
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 3080
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 3080
a(8) = a1(j8)

    a(7) = s3 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 3070:
    If b1(a(7)) = 0 Then GoTo 3070
    If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 3070
    
    a(6) = 4 * s3 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 3060:
    If b1(a(6)) = 0 Then GoTo 3060
    If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 3060

    a(5) = s3 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 3050:
    If Phase1 = 1 Then                                                 'Will not be used for Phase1 = 2
        If b1(a(5)) = 0 Then GoTo 3050
    End If
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 3050
    
    a(4) = -2 * s3 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 3040:
    If b1(a(4)) = 0 Then GoTo 3040
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 3040
    
    a(3) = -s3 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 3030:
    If b1(a(3)) = 0 Then GoTo 3030
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 3030
    
    a(2) = 2 * s3 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 3020:
    If b1(a(2)) = 0 Then GoTo 3020
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 3020
    
    a(1) = 2 * s3 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 3010:
    If b1(a(1)) = 0 Then GoTo 3010
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 3010
 
    Return
                          
     b(c(1)) = 0: c(1) = 0
3010 b(c(2)) = 0: c(2) = 0
3020 b(c(3)) = 0: c(2) = 0
3030 b(c(4)) = 0: c(4) = 0
3040 b(c(5)) = 0: c(5) = 0
3050 b(c(6)) = 0: c(6) = 0
3060 b(c(7)) = 0: c(7) = 0
3070 b(c(8)) = 0: c(8) = 0
3080 Next j8

     b(c(9)) = 0: c(9) = 0
3090 Next j9
   
   fl1 = 0
   
   Return
     
'    Complete  Eccentrc Squares A1/2 (5 x 5)

5000 fl1 = 1

'   Determine Main Diagonal and related pairs

    For j1 = m1 To m2
    If b1(a1(j1)) = 0 Then GoTo 10
    If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 10
    a(1) = a1(j1)
    
    a(5) = Pr3 - a(1): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
   
    For j2 = m1 To m2
    If b1(a1(j2)) = 0 Then GoTo 20
    If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 20
    a(2) = a1(j2)
  
    a(6) = Pr3 - a(2): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
  
    For j3 = m1 To m2
    If b1(a1(j3)) = 0 Then GoTo 30
    If b(a1(j3)) = 0 Then b(a1(j3)) = a1(j3): c(3) = a1(j3) Else GoTo 30
    a(3) = a1(j3)
    
    a(7) = Pr3 - a(3): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    
    a(4) = (s5 - Crnr3(i35)) - a(3) - a(2) - a(1)
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    a(8) = Pr3 - a(4): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80

'   Determine remainder of the pairs

    For j9 = m1 To m2
    If b1(a1(j9)) = 0 Then GoTo 90
    If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
    a(9) = a1(j9)
   
    a(12) = Pr3 - a(9): If b(a(12)) = 0 Then b(a(12)) = a(12): c(12) = a(12) Else GoTo 120

    For j10 = m1 To m2
    If b1(a1(j10)) = 0 Then GoTo 100
    If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
    a(10) = a1(j10)
    
    a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140

    a(11) = s5 - a(1) - a(6) - a(9) - a(10)
    If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110:
    If b1(a(11)) = 0 Then GoTo 110
    If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110

    a(13) = Pr3 - a(11): If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
    
    a(15) = s5 - a(4) - a(7) - a(14) - a(11)
    If a(15) < a1(m1) Or a(15) > a1(m2) Then GoTo 150:
    If b1(a(15)) = 0 Then GoTo 150
    If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150

    a(16) = Pr3 - a(15): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160

    Return
    
    b(c(16)) = 0: c(16) = 0
160 b(c(15)) = 0: c(15) = 0
150 b(c(13)) = 0: c(13) = 0
130 b(c(11)) = 0: c(11) = 0
110 b(c(14)) = 0: c(14) = 0
140 b(c(10)) = 0: c(10) = 0
100 Next j10

    b(c(12)) = 0: c(12) = 0
120 b(c(9)) = 0: c(9) = 0
90 Next j9

    b(c(8)) = 0: c(8) = 0
80  b(c(4)) = 0: c(4) = 0
40  b(c(7)) = 0: c(7) = 0
70  b(c(3)) = 0: c(3) = 0
30  Next j3

   b(c(6)) = 0: c(6) = 0
60 b(c(2)) = 0: c(2) = 0
20 Next j2

   b(c(5)) = 0: c(5) = 0
50 b(c(1)) = 0: c(1) = 0
10 Next j1

     fl1 = 0
     Return
     
'    Complete  Eccentrc Squares B1/2 (7 x 7)
'    Main Diagonal and Related Pairs

7000 fl1 = 1

    For j10 = m1 To m2
    If b1(a1(j10)) = 0 Then GoTo 7100
    If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 7100
    a(10) = a1(j10)
    
    a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 7140
   
    For j11 = m1 To m2
    If b1(a1(j11)) = 0 Then GoTo 7110
    If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 7110
    a(11) = a1(j11)
   
    a(15) = Pr3 - a(11): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 7150
  
    For j12 = m1 To m2
    If b1(a1(j12)) = 0 Then GoTo 7120
    If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 7120
    a(12) = a1(j12)
    
    a(16) = Pr3 - a(12): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 7160
    
    a(13) = (s7 - Crnr3(i35)) - a(12) - a(11) - a(10)
    If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 7130:
    If b1(a(13)) = 0 Then GoTo 7130
    If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 7130
    
    a(17) = Pr3 - a(13): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 7170
    
    For j18 = m1 To m2
    If b1(a1(j18)) = 0 Then GoTo 7180
    If b(a1(j18)) = 0 Then b(a1(j18)) = a1(j18): c(18) = a1(j18) Else GoTo 7180
    a(18) = a1(j18)

    a(19) = Pr3 - a(18): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 7190
    
    a(20) = s7 - s3 - a(10) - a(15) - a(18)
    If a(20) < a1(m1) Or a(20) > a1(m2) Then GoTo 7200:
    If b1(a(20)) = 0 Then GoTo 7200
    If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 7200
    
    a(21) = Pr3 - a(20): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 7210
    
    For j22 = m1 To m2
    If b1(a1(j22)) = 0 Then GoTo 7220
    If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 7220
    a(22) = a1(j22)

    a(23) = Pr3 - a(22): If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 7230
    
    a(24) = s7 - s3 - a(13) - a(16) - a(22)
    If a(24) < a1(m1) Or a(24) > a1(m2) Then GoTo 7240:
    If b1(a(24)) = 0 Then GoTo 7240
    If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 7240
    
    a(25) = Pr3 - a(24): If b(a(25)) = 0 Then b(a(25)) = a(25): c(25) = a(25) Else GoTo 7250
    
     Return

     b(c(25)) = 0: c(25) = 0
7250 b(c(24)) = 0: c(24) = 0
7240 b(c(23)) = 0: c(23) = 0
7230 b(c(22)) = 0: c(22) = 0
7220 Next j22

    b(c(21)) = 0: c(21) = 0
7210 b(c(20)) = 0: c(20) = 0
7200 b(c(19)) = 0: c(19) = 0
7190 b(c(18)) = 0: c(18) = 0
7180 Next j18
    
    b(c(17)) = 0: c(17) = 0
7170 b(c(13)) = 0: c(13) = 0
7130 b(c(16)) = 0: c(16) = 0
7160 b(c(12)) = 0: c(12) = 0
7120 Next j12

    b(c(15)) = 0: c(15) = 0
7150 b(c(11)) = 0: c(11) = 0
7110 Next j11

    b(c(14)) = 0: c(14) = 0
7140 b(c(10)) = 0: c(10) = 0
7100 Next j10

     fl1 = 0
     Return
     
'    Generate Pan Magic Squares Pm1/2 (4 x 4)

4000 fl1 = 1

For j16 = m1 To m2                                          'a(16)
    If b1(a1(j16)) = 0 Then GoTo 4160
    If b(a1(j16)) = 0 Then b(a1(j16)) = a1(j16): c(16) = a1(j16) Else GoTo 4160
    a(16) = a1(j16)
    
For j15 = m1 To m2                                          'a(15)
    If b1(a1(j15)) = 0 Then GoTo 4150
    If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 4150
    a(15) = a1(j15)
    
For j14 = m1 To m2                                          'a(14)
    If b1(a1(j14)) = 0 Then GoTo 4140
    If b(a1(j14)) = 0 Then b(a1(j14)) = a1(j14): c(14) = a1(j14) Else GoTo 4140
    a(14) = a1(j14)
    
    a(13) = s4 - a(14) - a(15) - a(16)
    If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 4130
    If b1(a(13)) = 0 Then GoTo 4130
    If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 4130
    
For j12 = m1 To m2                                          'a(12)
    If b1(a1(j12)) = 0 Then GoTo 4120
    If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 4120
    a(12) = a1(j12)
    
    a(11) = s4 - a(12) - a(15) - a(16)
    If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 4070
    If b1(a(11)) = 0 Then GoTo 4070
    
    a(10) = a(12) - a(14) + a(16)
    If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 4070
    If b1(a(10)) = 0 Then GoTo 4070
    
    a(9) = -a(12) + a(14) + a(15)
    If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 4070
    If b1(a(9)) = 0 Then GoTo 4070
    
    a(8) = 0.5 * s4 - a(14)
    If a(8) < a1(m1) Or a(8) > a1(m2) Then GoTo 4070
    If b1(a(8)) = 0 Then GoTo 4070
    
    a(7) = -0.5 * s4 + a(14) + a(15) + a(16)
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 4070:
    If b1(a(7)) = 0 Then GoTo 4070
    
    a(6) = 0.5 * s4 - a(16)
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 4070:
    If b1(a(6)) = 0 Then GoTo 4070
    
    a(5) = 0.5 * s4 - a(15)
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 4070:
    If b1(a(5)) = 0 Then GoTo 4070
    
    a(4) = 0.5 * s4 - a(12) + a(14) - a(16)
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 4070:
    If b1(a(4)) = 0 Then GoTo 4070
    
    a(3) = 0.5 * s4 + a(12) - a(14) - a(15)
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 4070:
    If b1(a(3)) = 0 Then GoTo 4070
    
    a(2) = 0.5 * s4 - a(12)
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 4070:
    If b1(a(2)) = 0 Then GoTo 4070
    
    a(1) = -0.5 * s4 + a(12) + a(15) + a(16)
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 4070:
    If b1(a(1)) = 0 Then GoTo 4070
    
'                 Exclude solutions with identical numbers (PM4)
    
                  n32 = 16: GoSub 800: If fl1 = 0 Then GoTo 4070
    
     Return
    
4070 b(c(12)) = 0: c(12) = 0
4120 Next j12

     b(c(13)) = 0: c(13) = 0
4130 b(c(14)) = 0: c(14) = 0
4140 Next j14
     b(c(15)) = 0: c(15) = 0
4150 Next j15
     b(c(16)) = 0: c(16) = 0
4160 Next j16

     fl1 = 0
     Return
    
'   Check Identical Numbers a()

800 fl1 = 1
    For i1 = 1 To n32
       a20 = a(i1)
       For i2 = (1 + i1) To n32
           If a20 = a(i2) Then fl1 = 0: Return
       Next i2
    Next i1
    Return

'   Double Check Identical Numbers a15()

850 fl1 = 1
    For i1 = 1 To 225
       a20 = a15(i1): If a20 = 0 Then GoTo 860
       For i2 = (1 + i1) To 225
           If a20 = a15(i2) Then fl1 = 0: Return
       Next i2
860 Next i1
    Return

'   Remove used pairs from b1()

900 For i1 = 1 To n32
        b1(a(i1)) = 0
    Next i1
    Return

'    Print results (lines)

1640 Cells(n9, 226).Select
     For i1 = 1 To 225
         Cells(n9, i1).Value = a15(i1)
     Next i1
     Cells(n9, 226).Value = s15
     Cells(n9, 227).Value = Rcrd1a
     Return

'    Print results (squares)

1650 n2 = n2 + 1
     If n2 = 2 Then
         n2 = 1: k1 = k1 + 16: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 16
     End If

     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "MC = " + CStr(s15)
    
     i3 = 0
     For i1 = 1 To 15
         For i2 = 1 To 15
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a15(i3)
         Next i2
     Next i1
    
     Return

End Sub

Vorige Pagina Volgende Pagina About the Author