Vorige Pagina Volgende Pagina About the Author

' Constructs Prime Number Composed Magic Squares of Order 15

' Tested with Office 2007 under Windows 7

Sub PriemG15()

    Dim a1(2448), a(64), a15(225), b1(43300), b(43300), c(64), Crnr3(2)

    y = MsgBox("Locked", vbCritical, "Routine PriemG15")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs7"
    ShtNm2 = "Sqrs11"

    t1 = Timer
    
    For j100 = 2 To 16

'       Start Reading Data ShtNm2
        
        Rcrd1a = Sheets(ShtNm2).Cells(j100, 227).Value
        MC15 = Sheets(ShtNm2).Cells(j100, 226).Value

'       Read Prime Numbers From Sheet ShtNm1

        Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value      'PairSum
        Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value    'Center Element
        
        s3 = 3 * Cntr3                                   'MC3
        s5 = 5 * Cntr3                                   'MC5
        s6 = 6 * Cntr3                                   'MC6
        s9 = 9 * Cntr3                                   'MC9
        s15 = 15 * Cntr3                                 'MC15
        
        nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value

        If nVar < 225 Then GoTo 1000

        If MC15 <> s15 Then
                y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2 + " " + CStr(j100))
                End
        End If

        Erase b1
        For j1 = 1 To nVar
            x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
            b1(x) = x
        Next j1
        pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value

'       Read Composed Magic Squares (11 x 11)
'       Store in a15() and Remove used pairs from b1()
        
        For i1 = 1 To 225
            a15(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
            b1(a15(i1)) = 0
        Next i1

'       Restore available pairs in a1()

        n10 = 0
        For j1 = 1 To pMax
            If b1(j1) <> 0 Then
                n10 = n10 + 1
                a1(n10) = b1(j1)
            End If
        Next j1
        m1 = 1: m2 = n10: n10 = 0
        If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
    
'       Complete 9 x 9 Eccentric Magic Squares
    
        Crnr3(1) = a15(39) + a15(55) + a15(71) + a15(87) + a15(103)     ' Square 1
        Crnr3(2) = a15(123) + a15(139) + a15(155) + a15(171) + a15(187) ' Square 2
    
         i35 = 1
         For n10 = 1 To 2
        
              Erase a, b, c
              GoSub 3000: If fl1 = 0 Then GoTo 1000
              GoSub 2000: If fl1 = 0 Then GoTo 1000
        
              Select Case n10
           
                    Case 1:
                    
                        a15(7) = a(10):   a15(8) = a(15):  a15(9) = a(19):  a15(10) = a(22): a15(11) = a(23): a15(12) = a(24): a15(13) = a(8):
                        a15(22) = a(14):  a15(23) = a(11): a15(24) = a(21): a15(25) = a(25): a15(26) = a(26): a15(27) = a(27): a15(28) = a(2):
                        a15(14) = a(9):   a15(15) = a(7):
                        a15(29) = a(3):   a15(30) = a(1):
                        a15(44) = a(6):   a15(45) = a(4):
                        a15(59) = a(31):  a15(60) = a(28):
                        a15(74) = a(32):  a15(75) = a(29):
                        a15(89) = a(33):  a15(90) = a(30):
                        a15(104) = a(20): a15(105) = a(18):
                        a15(119) = a(12): a15(120) = a(16):
                        a15(134) = a(17): a15(135) = a(13):
                    
                        n32 = 33: GoSub 900                 'Remove used primes from available primes
                        i35 = 2
                   
                    Case 2:

                        a15(91) = a(13):  a15(92) = a(17):
                        a15(106) = a(16): a15(107) = a(12):
                        a15(121) = a(18): a15(122) = a(20):
                        a15(136) = a(30): a15(137) = a(33):
                        a15(151) = a(29): a15(152) = a(32):
                        a15(166) = a(28): a15(167) = a(31):
                        a15(181) = a(4):  a15(182) = a(6):
                        a15(196) = a(1):  a15(197) = a(3):
                        a15(211) = a(7):  a15(212) = a(9):
                        a15(198) = a(2):  a15(199) = a(27): a15(200) = a(26): a15(201) = a(25): a15(202) = a(21): a15(203) = a(11): a15(204) = a(14):
                        a15(213) = a(8):  a15(214) = a(24): a15(215) = a(23): a15(216) = a(22): a15(217) = a(19): a15(218) = a(15): a15(219) = a(10):
       
                        n32 = 33: GoSub 900                 'Remove used primes from available primes
            
              End Select
        
         Next n10
    
'        Complete 6 x 6 Eccentric Magic Squares
    
         Crnr3(1) = a15(34) + a15(48)   ' Square 1
         Crnr3(2) = a15(178) + a15(192) ' Square 2

         i35 = 1
         For n10 = 1 To 2
        
              Erase a, b, c
              GoSub 6000: If fl1 = 0 Then GoTo 1000
        
              Select Case n10
           
                    Case 1:
                    
                        a15(1) = a(20):  a15(2) = a(19):  a15(3) = a(18):  a15(4) = a(17):  a15(5) = a(6):  a15(6) = a(1):
                        a15(16) = a(24): a15(17) = a(23): a15(18) = a(22): a15(19) = a(21): a15(20) = a(2): a15(21) = a(5):
                        a15(31) = a(25): a15(32) = a(27):
                        a15(46) = a(26): a15(47) = a(28):
                        a15(61) = a(7):  a15(62) = a(3):
                        a15(76) = a(4):  a15(77) = a(8):
                    
                        n32 = 28: GoSub 900                 'Remove used primes from available primes
                        i35 = 2
                   
                    Case 2:
                
                                                                                              a15(149) = a(8):  a15(150) = a(4):
                                                                                              a15(164) = a(3):  a15(165) = a(7):
                                                                                              a15(179) = a(28): a15(180) = a(26):
                                                                                              a15(194) = a(27): a15(195) = a(25):
                        a15(205) = a(5): a15(206) = a(2): a15(207) = a(21): a15(208) = a(22): a15(209) = a(23): a15(210) = a(24):
                        a15(220) = a(1): a15(221) = a(6): a15(222) = a(17): a15(223) = a(18): a15(224) = a(19): a15(225) = a(20):

       
                        GoSub 800:                          'Back Check Identical Numbers a15()
                        If fl1 = 1 Then
                           n9 = n9 + 1: GoSub 1650          'Print results (squares)
'                          n9 = n9 + 1: GoSub 1640          'Print results (lines)
                        End If
             
              End Select
        
         Next n10
         
     Erase b1, b, c
1000 Next j100
    
    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine PriemG15")
    
End

'   Determine Main Diagonal and Remaining Pairs

6000 fl1 = 1

    For j1 = m1 To m2
    If b1(a1(j1)) = 0 Then GoTo 6010
    If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 6010
    a(1) = a1(j1)
   
    a(5) = Pr3 - a(1): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 6050
   
    For j2 = m1 To m2
    If b1(a1(j2)) = 0 Then GoTo 6020
    If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 6020
    a(2) = a1(j2)
  
    a(6) = Pr3 - a(2): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 6060
  
    For j3 = m1 To m2
    If b1(a1(j3)) = 0 Then GoTo 6030
    If b(a1(j3)) = 0 Then b(a1(j3)) = a1(j3): c(3) = a1(j3) Else GoTo 6030
    a(3) = a1(j3)
    
    a(7) = Pr3 - a(3): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 6070
    
    a(4) = s6 - a(3) - a(2) - a(1) - Crnr3(i35)
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 6040:
    If b1(a(4)) = 0 Then GoTo 6040
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 6040
    
    a(8) = Pr3 - a(4): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 6080
 
'   Determine remainder of the pairs

    For j17 = m1 To m2                                                     'a(17)
    If b1(a1(j17)) = 0 Then GoTo 6170
    If b(a1(j17)) = 0 Then b(a1(j17)) = a1(j17): c(17) = a1(j17) Else GoTo 6170
    a(17) = a1(j17)

    a(21) = Pr3 - a(17): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 6210

    For j18 = m1 To m2
    If b1(a1(j18)) = 0 Then GoTo 6180
    If b(a1(j18)) = 0 Then b(a1(j18)) = a1(j18): c(18) = a1(j18) Else GoTo 6180
    a(18) = a1(j18)
    
    a(22) = Pr3 - a(18): If b(a(22)) = 0 Then b(a(22)) = a(22): c(22) = a(22) Else GoTo 6220

    For j19 = m1 To m2
    If b1(a1(j19)) = 0 Then GoTo 6190
    If b(a1(j19)) = 0 Then b(a1(j19)) = a1(j19): c(19) = a1(j19) Else GoTo 6190
    a(19) = a1(j19)
    
    a(24) = Pr3 - a(19): If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 6240

    a(20) = s6 - a(19) - a(18) - a(17) - a(6) - a(1)
    If a(20) < a1(m1) Or a(20) > a1(m2) Then GoTo 6200:
    If b1(a(20)) = 0 Then GoTo 6200
    If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 6200
   
    a(23) = Pr3 - a(20): If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 6230
 
    For j25 = m1 To m2
    If b1(a1(j25)) = 0 Then GoTo 6250
    If b(a1(j25)) = 0 Then b(a1(j25)) = a1(j25): c(25) = a1(j25) Else GoTo 6250
    a(25) = a1(j25)
    
    a(27) = Pr3 - a(25): If b(a(27)) = 0 Then b(a(27)) = a(27): c(27) = a(27) Else GoTo 6270

    a(26) = s6 - a(25) - a(24) - a(20) - a(7) - a(4)
    If a(26) < a1(m1) Or a(26) > a1(m2) Then GoTo 6260:
    If b1(a(26)) = 0 Then GoTo 6260
    If b(a(26)) = 0 Then b(a(26)) = a(26): c(26) = a(26) Else GoTo 6260

    a(28) = Pr3 - a(26): If b(a(28)) = 0 Then b(a(28)) = a(28): c(28) = a(28) Else GoTo 6280

    Return

     b(c(28)) = 0: c(28) = 0
6280 b(c(26)) = 0: c(26) = 0
6260 b(c(27)) = 0: c(27) = 0
6270 b(c(25)) = 0: c(25) = 0
6250 Next j25

     b(c(23)) = 0: c(23) = 0
6230 b(c(20)) = 0: c(20) = 0
6200 b(c(24)) = 0: c(24) = 0
6240 b(c(19)) = 0: c(19) = 0
6190 Next j19

     b(c(22)) = 0: c(22) = 0
6220 b(c(18)) = 0: c(18) = 0
6180 Next j18

     b(c(21)) = 0: c(21) = 0
6210 b(c(17)) = 0: c(17) = 0
6170 Next j17

6090 b(c(8)) = 0: c(8) = 0
6080 b(c(4)) = 0: c(4) = 0
6040 b(c(7)) = 0: c(7) = 0
6070 b(c(3)) = 0: c(3) = 0
6030 Next j3

     b(c(6)) = 0: c(6) = 0
6060 b(c(2)) = 0: c(2) = 0
6020 Next j2

     b(c(5)) = 0: c(5) = 0
6050 b(c(1)) = 0: c(1) = 0
6010 Next j1

    fl1 = 0
    
    Return

'       Determine Magic Square Order 3

2000 fl1 = 1

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 90
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 80
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)

    a(7) = s3 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 70:
    If b1(a(7)) = 0 Then GoTo 70
    If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    
    a(6) = 4 * s3 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
    If b1(a(6)) = 0 Then GoTo 60
    If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

    a(5) = s3 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
    ''If b1(a(5)) = 0 Then GoTo 50                                   'will not be used
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
    
    a(4) = -2 * s3 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    a(3) = -s3 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
    If b1(a(3)) = 0 Then GoTo 30
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
    a(2) = 2 * s3 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
    If b1(a(2)) = 0 Then GoTo 20
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    
    a(1) = 2 * s3 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
    If b1(a(1)) = 0 Then GoTo 10
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
                          
    Return
                          
5  b(c(1)) = 0: c(1) = 0
10 b(c(2)) = 0: c(2) = 0
20 b(c(3)) = 0: c(2) = 0
30 b(c(4)) = 0: c(4) = 0
40 b(c(5)) = 0: c(5) = 0
50 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 Next j8
    
    b(c(9)) = 0: c(9) = 0
90 Next j9

   fl1 = 0

   Return

'   Determine Main Diagonal and Remaining Pairs

3000 fl1 = 1

'   Main Diagonal and Related Border Pairs

    For j10 = m1 To m2
    If b1(a1(j10)) = 0 Then GoTo 100
    If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
    a(10) = a1(j10)
    
    a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140
   
    For j11 = m1 To m2
    If b1(a1(j11)) = 0 Then GoTo 110
    If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 110
    a(11) = a1(j11)
   
    a(15) = Pr3 - a(11): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
  
    For j12 = m1 To m2
    If b1(a1(j12)) = 0 Then GoTo 120
    If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
    a(12) = a1(j12)
    
    a(16) = Pr3 - a(12): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160
    
    a(13) = (s9 - Crnr3(i35)) - a(12) - a(11) - a(10)
    If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 130:
    If b1(a(13)) = 0 Then GoTo 130
    If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
    
    a(17) = Pr3 - a(13): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 170
    
    a(18) = s3 - a(13) - a(16)
    If a(18) < a1(m1) Or a(18) > a1(m2) Then GoTo 180:
    If b1(a(18)) = 0 Then GoTo 180
    If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 180
    
    a(20) = Pr3 - a(18): If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 200
    
    a(19) = s3 - a(10) - a(15)
    If a(19) < a1(m1) Or a(19) > a1(m2) Then GoTo 190:
    If b1(a(19)) = 0 Then GoTo 190
    If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 190
    
    a(21) = Pr3 - a(19): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210
  
'   Remaining Magic Rectangles

    For j22 = m1 To m2
    If b1(a1(j22)) = 0 Then GoTo 220
    If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 220
    a(22) = a1(j22)

    a(25) = Pr3 - a(22): If b(a(25)) = 0 Then b(a(25)) = a(25): c(25) = a(25) Else GoTo 250

    For j23 = m1 To m2
    If b1(a1(j23)) = 0 Then GoTo 230
    If b(a1(j23)) = 0 Then b(a1(j23)) = a1(j23): c(23) = a1(j23) Else GoTo 230
    a(23) = a1(j23)

    a(26) = Pr3 - a(23): If b(a(26)) = 0 Then b(a(26)) = a(26): c(26) = a(26) Else GoTo 260

    a(24) = s3 - a(22) - a(23)
    If a(24) < a1(m1) Or a(24) > a1(m2) Then GoTo 240:
    If b1(a(24)) = 0 Then GoTo 240
    If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 240

    a(27) = Pr3 - a(24): If b(a(27)) = 0 Then b(a(27)) = a(27): c(27) = a(27) Else GoTo 270

    For j28 = m1 To m2
    If b1(a1(j28)) = 0 Then GoTo 280
    If b(a1(j28)) = 0 Then b(a1(j28)) = a1(j28): c(28) = a1(j28) Else GoTo 280
    a(28) = a1(j28)

    a(31) = Pr3 - a(28): If b(a(31)) = 0 Then b(a(31)) = a(31): c(31) = a(31) Else GoTo 310

    For j29 = m1 To m2
    If b1(a1(j29)) = 0 Then GoTo 290
    If b(a1(j29)) = 0 Then b(a1(j29)) = a1(j29): c(29) = a1(j29) Else GoTo 290
    a(29) = a1(j29)

    a(32) = Pr3 - a(29): If b(a(32)) = 0 Then b(a(32)) = a(32): c(32) = a(32) Else GoTo 320

    a(30) = s3 - a(28) - a(29)
    If a(30) < a1(m1) Or a(30) > a1(m2) Then GoTo 300:
    If b1(a(30)) = 0 Then GoTo 300
    If b(a(30)) = 0 Then b(a(30)) = a(30): c(30) = a(30) Else GoTo 300

    a(33) = Pr3 - a(30): If b(a(33)) = 0 Then b(a(33)) = a(33): c(33) = a(33) Else GoTo 330

    Return

    b(c(33)) = 0: c(33) = 0
330 b(c(30)) = 0: c(30) = 0
300 b(c(32)) = 0: c(32) = 0
320 b(c(29)) = 0: c(29) = 0
290 Next j29

    b(c(31)) = 0: c(31) = 0
310 b(c(28)) = 0: c(28) = 0
280 Next j28

    b(c(27)) = 0: c(27) = 0
270 b(c(24)) = 0: c(24) = 0
240 b(c(26)) = 0: c(26) = 0
260 b(c(23)) = 0: c(23) = 0
230 Next j23

    b(c(25)) = 0: c(25) = 0
250 b(c(22)) = 0: c(22) = 0
220 Next j22
    
    b(c(21)) = 0: c(21) = 0
210 b(c(19)) = 0: c(19) = 0
190 b(c(20)) = 0: c(20) = 0
200 b(c(18)) = 0: c(18) = 0
180 b(c(17)) = 0: c(17) = 0
170 b(c(13)) = 0: c(13) = 0
130 b(c(16)) = 0: c(16) = 0
160 b(c(12)) = 0: c(12) = 0
120 Next j12

    b(c(15)) = 0: c(15) = 0
150 b(c(11)) = 0: c(11) = 0
110 Next j11

    b(c(14)) = 0: c(14) = 0
140 b(c(10)) = 0: c(10) = 0
100 Next j10

    fl1 = 0
    
    Return

'   Double Check Identical Numbers a15()

800 fl1 = 1
    For i1 = 1 To 225
       a20 = a15(i1): If a20 = 0 Then GoTo 810
       For i2 = (1 + i1) To 225
           If a20 = a15(i2) Then fl1 = 0: Return
       Next i2
810 Next i1
    Return

'   Remove used pairs from b1()

900 For i1 = 1 To n32
        b1(a(i1)) = 0
    Next i1
    Return

'    Print results (lines)

1640 Cells(n9, 226).Select
     For i1 = 1 To 225
         Cells(n9, i1).Value = a15(i1)
     Next i1
     Cells(n9, 226).Value = s15
     Cells(n9, 227).Value = Rcrd1a
     Return

'    Print results (squares)

1650 n2 = n2 + 1
     If n2 = 2 Then
         n2 = 1: k1 = k1 + 16: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 16
     End If

     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "MC = " + CStr(s15)
    
     i3 = 0
     For i1 = 1 To 15
         For i2 = 1 To 15
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a15(i3)
         Next i2
     Next i1
    
     Return

End Sub

Vorige Pagina Volgende Pagina About the Author