Vorige Pagina Volgende Pagina About the Author

' Constructs 10 x 10 Composed Magic Squares for Prime Numbers (Part 2)
' Semi Magic Corner Squares, Optimized for Sophie Germain Primes

' Tested with Office 2007 under Windows 7

Sub Priem10b2()

Dim a1(1260), b1(187141), b(187141), c(36), a(24), a10(100)

y = MsgBox("Locked", vbCritical, "Routine Priem10b2")
End
    
    n1 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs2"
    
    Sheets("Klad1").Select
    t1 = Timer

'   Generate Squares

For j100 = 2 To 13

    s10 = Sheets("Lines10").Cells(j100, 101).Value    'MC10
    s3 = 3 * s10 / 10
    s4 = 4 * s10 / 10
    Rcrd1a = Sheets("Lines10").Cells(j100, 102).Value

    nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value
   
    If nVar < 100 Then GoTo 1000
    m1 = 1: m2 = nVar

    For i1 = 1 To m2
        a1(i1) = Sheets(ShtNm1).Cells(Rcrd1a, i1 + 9).Value
    Next i1

'   Refresh Extended Range

    Erase b1
    For i1 = 1 To 1055
        x = Sheets("SG1").Cells(i1, 1).Value
        b1(x) = x
    Next i1

'   Read Magic Center and Corner Squares
'   Assign to a10() and and Remove from b1()
 
    Erase a10
    For i1 = 1 To 100
        a10(i1) = Sheets("Lines10").Cells(j100, i1).Value
        b1(a10(i1)) = 0
    Next i1

'   Generate  Magic Rectangles (3 x 4)

For j12 = m1 To m2                                                     'a(12)
If b1(a1(j12)) = 0 Then GoTo 120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
a(12) = a1(j12)

For j11 = m1 To m2                                                     'a(11)
If b1(a1(j11)) = 0 Then GoTo 110
If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 110
a(11) = a1(j11)
  
For j10 = m1 To m2                                                     'a(10)
If b1(a1(j10)) = 0 Then GoTo 100
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)

    a(9) = s4 - a(10) - a(11) - a(12)
    If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 90:
    If b1(a(9)) = 0 Then GoTo 90
    If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90

For j8 = m1 To m2                                                       'a(8)
If b1(a1(j8)) = 0 Then GoTo 80
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)

    a(4) = -s4 / 4 - a(8) + a(9) + a(10) + a(11)
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40

For j7 = m1 To m2                                                       'a(7)
If b1(a1(j7)) = 0 Then GoTo 70
If b(a1(j7)) = 0 Then b(a1(j7)) = a1(j7): c(7) = a1(j7) Else GoTo 70
a(7) = a1(j7)

    a(3) = s3 - a(7) - a(11)
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
    If b1(a(3)) = 0 Then GoTo 30
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
For j6 = m1 To m2                                                       'a(6)
If b1(a1(j6)) = 0 Then GoTo 60
If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 60
a(6) = a1(j6)

    a(5) = s4 - a(6) - a(7) - a(8)
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
    If b1(a(5)) = 0 Then GoTo 50
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50

    a(2) = s3 - a(6) - a(10)
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
    If b1(a(2)) = 0 Then GoTo 20
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20

    a(1) = -s4 / 4 + a(6) + a(7) + a(8) - a(9)
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
    If b1(a(1)) = 0 Then GoTo 10
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10

            n10 = n10 + 1
            Select Case n10
        
            Case 1:
                 
                   GoSub 750: GoSub 900          'Assign Rectangle 1, Remove used primes
                   Erase b, c: GoTo 120
            
            Case 2:
 
                   GoSub 750: GoSub 900          'Assign Rectangle 2, Remove used primes
                   Erase b, c: GoTo 120
                 
            Case 3:
 
                   GoSub 750: GoSub 900          'Assign Rectangle 3, Remove used primes
                   Erase b, c: GoTo 120
                 
            Case 4:
 
                   GoSub 750                     'Assign Rectangle 4
                   GoSub 850                     'Double Check Identical Integers a10()
                   If fl1 = 1 Then
'                      n9 = n9 + 1: GoSub 640    'Print results (lines)
                       n9 = n9 + 1: GoSub 660    'Print results (squares)
                   End If
                   Erase b1, b, c: GoTo 1000     'Print only first square
                 
            End Select

    b(c(24)) = 0: c(24) = 0
240 b(c(1)) = 0: c(1) = 0
10  b(c(23)) = 0: c(23) = 0
230 b(c(2)) = 0: c(2) = 0
20  b(c(20)) = 0: c(20) = 0
200 b(c(5)) = 0: c(5) = 0
50  b(c(19)) = 0: c(19) = 0
190 b(c(6)) = 0: c(6) = 0
60  Next j6

    b(c(22)) = 0: c(22) = 0
220 b(c(3)) = 0: c(3) = 0
30  b(c(18)) = 0: c(18) = 0
180 b(c(7)) = 0: c(7) = 0
70  Next j7

    b(c(21)) = 0: c(21) = 0
210 b(c(4)) = 0: c(4) = 0
40  b(c(17)) = 0: c(17) = 0
170 b(c(8)) = 0: c(8) = 0
80  Next j8

    b(c(16)) = 0: c(16) = 0
160 b(c(9)) = 0: c(9) = 0
90  b(c(15)) = 0: c(15) = 0
150 b(c(10)) = 0: c(10) = 0
100 Next j10

    b(c(14)) = 0: c(14) = 0
140 b(c(11)) = 0: c(11) = 0
110 Next j11

    b(c(13)) = 0: c(13) = 0
130 b(c(12)) = 0: c(12) = 0
120 Next j12

'   Not found

GoSub 850                              'Double Check Identical Integers
If fl1 = 1 Then
       n9 = n9 + 1: GoSub 660          'Print Composed Squares
End If
Erase b, c

1000  n10 = 0
      Next j100

   t2 = Timer
    
   t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
   y = MsgBox(t10, 0, "Routine Priem10b2")

End

'   Print results (selected numbers)

640 Cells(n9, 9).Select
    For i1 = 1 To 100
        Cells(n9, i1).Value = a10(i1)
    Next i1
    Cells(n9, 145).Value = s10
    Return

'   Print results (squares 10 x 10)

660 n1 = n1 + 1
    If n1 = 2 Then
        n1 = 1: k1 = k1 + 11: k2 = 1
    Else
        If n9 > 1 Then k2 = k2 + 11
    End If
    
    Cells(k1, k2 + 1).Select
    Cells(k1, k2 + 1).Font.Color = -4165632
    
    Cells(k1, k2 + 1).Value = CStr(s10)
    
    i3 = 0
    For i1 = 1 To 10
        For i2 = 1 To 10
            i3 = i3 + 1
            Cells(k1 + i1, k2 + i2).Value = a10(i3)
        Next i2
    Next i1
    
    Return
   
'    Exclude solutions with identical numbers a10()

850  fl1 = 1
     For j1 = 1 To 100
        a20 = a10(j1): If a20 = 0 Then GoTo 860
        For j2 = (1 + j1) To 100
            If a20 = a10(j2) Then fl1 = 0: Return
        Next j2
860  Next j1
     Return
     
'    Assign Rectangles (Clockwise)

750  Select Case n10

        Case 1: 'Top
                
            a10(4) = a(1):  a10(5) = a(2):   a10(6) = a(3):   a10(7) = a(4):
            a10(14) = a(5): a10(15) = a(6):  a10(16) = a(7):  a10(17) = a(8):
            a10(24) = a(9): a10(25) = a(10): a10(26) = a(11): a10(27) = a(12):
                
        Case 2: 'Right

            a10(38) = a(1): a10(39) = a(5): a10(40) = a(9):
            a10(48) = a(2): a10(49) = a(6): a10(50) = a(10):
            a10(58) = a(3): a10(59) = a(7): a10(60) = a(11):
            a10(68) = a(4): a10(69) = a(8): a10(70) = a(12):
                
        Case 3: 'Bottom
 
            a10(74) = a(1): a10(75) = a(2):  a10(76) = a(3):  a10(77) = a(4):
            a10(84) = a(5): a10(85) = a(6):  a10(86) = a(7):  a10(87) = a(8):
            a10(94) = a(9): a10(95) = a(10): a10(96) = a(11): a10(97) = a(12):
 
        Case 4: 'Left
       
            a10(31) = a(1): a10(32) = a(5): a10(33) = a(9):
            a10(41) = a(2): a10(42) = a(6): a10(43) = a(10):
            a10(51) = a(3): a10(52) = a(7): a10(53) = a(11):
            a10(61) = a(4): a10(62) = a(8): a10(63) = a(12):
     
     End Select
     
     Return

'    Exclude solutions with identical numbers a()

800  fl1 = 1
     For j1 = 1 To 12
        a20 = a(j1)
        For j2 = (1 + j1) To 12
            If a20 = a(j2) Then fl1 = 0: Return
        Next j2
     Next j1
     Return

'    Remove used primes a() from available primes b1()

900  For i1 = 1 To 12
         b1(a(i1)) = 0
     Next i1
     Return

End Sub

Vorige Pagina Volgende Pagina About the Author