Office Applications and Entertainment, Magic Squares | ||
|
|
Index | About the Author |
|
14.0 Special Magic Squares, Prime Numbers
Sophie Germain Primes
{ai} are prime numbers for which the operation
{bi} = 2 * {ai} + 1 results in prime numbers {bi}
for i = 1 ... n.
Attachment 14.17.1
shows for the range {bi} = (23 ... 174299) the first occurring
pairs of 3 x 3 Sophie Germain Magic Squares for miscellaneous Magic Sums.
Attachment 14.17.14
shows for the range {bi} = (11 ... 1319) the first occurring
pairs of 4 x 4 Sophie Germain Simple Magic Squares for miscellaneous (smaller) Magic Sums
(ref. Priem4a).
|
MC4a = 21944
3779 3623 6899 7643 3761 10781 641 6761 4073 3329 7193 7349 10331 4211 7211 191 MC4b = 43892
7559 7247 13799 15287 7523 21563 1283 13523 8147 6659 14387 14699 20663 8423 14423 383
|
The pair shown corresponds with 384 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 16.
Attachment 14.17.3
shows for the range {bi} = (23 ... 43607) the first occurring
pairs of 5 x 5 Sophie Germain Simple Magic Squares for miscellaneous Magic Sums.
Occasionally order 5 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes
{bi} for i = 1 ... 25.
|
MC5a = 11095
2399 1811 2273 2549 2063 1601 2141 2741 2543 2069 2699 2351 1733 1973 2339 2393 2753 1889 2129 1931 2003 2039 2459 1901 2693 MC5b = 22195
4799 3623 4547 5099 4127 3203 4283 5483 5087 4139 5399 4703 3467 3947 4679 4787 5507 3779 4259 3863 4007 4079 4919 3803 5387
|
The right square (5b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4
for order 6 squares.
Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 25.
Attachment 14.17.9
shows for the range {bi} = (23 ... 43607) the first occurring
pairs of 6 x 6 Sophie Germain Simple Magic Squares, with symmetrical main diagonals, for miscellaneous Magic Sums.
|
MC6a = 20946
6173 719 2039 2063 6329 3623 419 6899 431 1583 5051 6563 1901 131 6323 5171 2339 5081 3593 5003 1811 659 6491 3389 5501 1931 5399 6551 83 1481 3359 6263 4943 4919 653 809 MC6b = 41898
12347 1439 4079 4127 12659 7247 839 13799 863 3167 10103 13127 3803 263 12647 10343 4679 10163 7187 10007 3623 1319 12983 6779 11003 3863 10799 13103 167 2963 6719 12527 9887 9839 1307 1619
|
Attachment 14.17.10
shows for the range {bi} = (23 ... 43607) the first occurring pairs of 6 x 6 Sophie Germain Bordered Magic Squares
for miscellaneous Magic Sums.
Alternatively order 6 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes
{bi} for i = 1 ... 36.
|
MC6a = 3450
83 179 1031 761 653 743 89 1229 641 809 191 491 113 1019 953 443 239 683 1013 173 251 359 1223 431 1049 719 281 659 233 509 1103 131 293 419 911 593 MC6b = 6906
167 359 2063 1523 1307 1487 179 2459 1283 1619 383 983 227 2039 1907 887 479 1367 2027 347 503 719 2447 863 2099 1439 563 1319 467 1019 2207 263 587 839 1823 1187
|
The right square (6b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4.
Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 36.
Attachment 14.17.11 shows a few examples of
pairs of 7 x 7 Sophie Germain Bordered Magic Squares, based on the
pairs of 5 x 5 Sophie Germain Simple Magic Squares as discussed in Section 14.17.3 above.
Attachment 14.17.15 shows a few examples of
pairs of 7 x 7 Sophie Germain Concentric Magic Squares, based on the
pairs of 5 x 5 Sophie Germain Concentric Magic Squares as discussed in Section 14.17.3 above.
Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 49,
(Order of magnitude 8 * (5!)2 = 115200 for the Same Center Square).
Order 7 pairs of Sophie Germain Magic Squares with smaller Magic Sums can be constructed based on consecutive Sophie Germain Primes
{bi} for i = 1 ... 49.
|
MC7a = 12743
809 2693 2351 1019 1409 2393 2069 2903 1601 2039 1049 1289 1733 2129 761 953 2459 2741 2273 1583 1973 743 911 2339 2543 2003 2063 2141 2699 2819 1223 1031 1931 1559 1481 2939 1013 1229 1811 2399 1901 1451 1889 2753 1103 2549 1439 1511 1499 MC7b = 25493
1619 5387 4703 2039 2819 4787 4139 5807 3203 4079 2099 2579 3467 4259 1523 1907 4919 5483 4547 3167 3947 1487 1823 4679 5087 4007 4127 4283 5399 5639 2447 2063 3863 3119 2963 5879 2027 2459 3623 4799 3803 2903 3779 5507 2207 5099 2879 3023 2999
|
The right square (7b) has been constructed with the Generator Method as discussed in detail in Section 14.13.5a.
14.17.6 Magic Squares, Composed (8 x 8)
In Section 14.6.1 was discussed how Prime Number Magic Squares of order 8 - with Magic Sum 2 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.
|
MC8a = 43888
10883 911 2939 7211 8273 2819 7883 2969 1559 9371 7151 3863 683 10799 2393 8069 5741 3821 1601 10781 2459 6053 2699 10733 3761 7841 10253 89 10529 2273 8969 173 7349 281 6491 7823 3851 2549 6323 9221 1031 7643 4211 9059 8741 7121 1289 4793 6983 3329 6761 4871 4019 6101 7433 4391 6581 10691 4481 191 5333 6173 6899 3539 MC8b = 87784
21767 1823 5879 14423 16547 5639 15767 5939 3119 18743 14303 7727 1367 21599 4787 16139 11483 7643 3203 21563 4919 12107 5399 21467 7523 15683 20507 179 21059 4547 17939 347 14699 563 12983 15647 7703 5099 12647 18443 2063 15287 8423 18119 17483 14243 2579 9587 13967 6659 13523 9743 8039 12203 14867 8783 13163 21383 8963 383 10667 12347 13799 7079
|
Attachment 14.17.12
contains a few more sets of Sophie Germain Simple Magic Squares,
which can be used to construct
pairs of Composed Sophie Germain Magic Squares of order 8
(ref. Priem4c2).
14.17.7 Magic Squares, Composed (9 x 9)
Pairs of Composed Sophie Germain Magic Squares of order 9
can be constructed based on a combination of order 3 Magic Center Squares with 8 Semi Magic Squares (6 Magic Lines).
14.17.8 Magic Squares, Composed (10 x 10)
Pairs of Composed Sophie Germain Magic Squares of order 10
can be constructed based on a combination of order 4 Magic Center Squares with 4 Semi Magic Corner Squares (6 Magic Lines).
14.17.9 Magic Squares, Composed (12 x 12)
Prime Number Magic Squares of order 12 - with Magic Sum 3 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.
The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Order
Main Characteristics
Subroutine
Results
3
Simple Magic
4
Simple Magic, Smaller Magic Sums
Simple Magic, Larger Magic Sums
Simple Magic, Triplets
5
Simple Magic
Simple Magic, Triplets
Associated
Pan Magic
Concentric
Magic, Square Inlay
Magic, Diamond Inlay
6
Symmetric Main Diagonals
Bordered
7
Bordered
Concentric
8
Composed of Simple Magic Sub Squares
Concentric
9
Magic Cntr Sqr, Semi Magic Sub Squares
Concentric
10
Magic Cntr Sqr, Semi Magic Corner Squares
Concentric
12
Composed of Simple Magic Sub Squares
|
Following sections will provide miscellaneous construction methods for Two and Four Way, V type Zig Zag Magic Squares.
|
|
|
Index | About the Author |