' Generates Prime Number Concentric Magic Squares of order 5
' Optimized for Sophie Germain Primes
' Tested with Office 2007 under Windows 7
Sub Priem5c2()
Dim a1(2448), a(36), a3(36), b1(205530), b(205530), c(36)
y = MsgBox("Locked", vbCritical, "Routine Priem5c2")
End
n2 = 0: n3 = 0: n9 = 0: k1 = 1: k2 = 1
Sht1 = "Pairs2"
Sht2 = "Lines3"
Sheets("Klad1").Select
t1 = Timer
For j100 = 5 To 22
Rcrd1a = Sheets(Sht2).Cells(j100, 11).Value
' Define variables
Pr3 = Sheets(Sht1).Cells(Rcrd1a, 1).Value
s1 = 5 * Sheets(Sht1).Cells(Rcrd1a, 1).Value / 2 'MC5
nVar = Sheets(Sht1).Cells(Rcrd1a, 9).Value
m1 = 1: m2 = nVar
For i1 = m1 To m2
a1(i1) = Sheets(Sht1).Cells(Rcrd1a, i1 + 9).Value
Next i1
pMax = a1(m2)
Erase b1
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
' Read Center Square and remove from Available Primes
For i1 = 1 To 9
a3(i1) = Sheets(Sht2).Cells(j100, i1).Value
b1(a3(i1)) = 0
b1(Pr3 - a3(i1)) = 0
Next i1
Erase a
' Load Center Square
a(7) = a3(1): a(8) = a3(2): a(9) = a3(3):
a(12) = a3(4): a(13) = a3(5): a(14) = a3(6):
a(17) = a3(7): a(18) = a3(8): a(19) = a3(9):
Erase a3
' Restore available pairs in a1()
n10 = 0
For j1 = 1 To pMax
If b1(j1) <> 0 Then
n10 = n10 + 1
a1(n10) = b1(j1)
End If
Next j1
m1 = 1: m2 = n10: n10 = 0
If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
' Determine Border Concentric Square
For j25 = m1 To m2 'a(25)
If b(a1(j25)) = 0 Then b(a1(j25)) = a1(j25): c(25) = a1(j25) Else GoTo 250
a(25) = a1(j25)
a(1) = 0.4 * s1 - a(25)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10
If b1(a(1)) = 0 Then GoTo 10
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
For j24 = m1 To m2 'a(24)
If b(a1(j24)) = 0 Then b(a1(j24)) = a1(j24): c(24) = a1(j24) Else GoTo 240
a(24) = a1(j24)
a(4) = 0.4 * s1 - a(24)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j23 = m1 To m2 'a(23)
If b(a1(j23)) = 0 Then b(a1(j23)) = a1(j23): c(23) = a1(j23) Else GoTo 230
a(23) = a1(j23)
a(3) = 0.4 * s1 - a(23)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
For j22 = m1 To m2 'a(22)
If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 220
a(22) = a1(j22)
a(21) = s1 - a(22) - a(23) - a(24) - a(25)
If a(21) < a1(m1) Or a(21) > a1(m2) Then GoTo 210
If b1(a(21)) = 0 Then GoTo 210
If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210
a(5) = 0.4 * s1 - a(21)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(2) = 0.4 * s1 - a(22)
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20
If b1(a(2)) = 0 Then GoTo 20
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
For j20 = m1 To m2 'a(20)
If b(a1(j20)) = 0 Then b(a1(j20)) = a1(j20): c(20) = a1(j20) Else GoTo 200
a(20) = a1(j20)
a(16) = 0.4 * s1 - a(20)
If a(16) < a1(m1) Or a(16) > a1(m2) Then GoTo 160
If b1(a(16)) = 0 Then GoTo 160
If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160
For j15 = m1 To m2 'a(15)
If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 150
a(15) = a1(j15)
a(11) = 0.4 * s1 - a(15)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110:
If b1(a(11)) = 0 Then GoTo 110
If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110
a(10) = 0.6 * s1 - a(15) - a(20) + a(21) - a(25)
If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 100:
If b1(a(10)) = 0 Then GoTo 100
If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100
a(6) = 0.4 * s1 - a(10)
If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
If b1(a(6)) = 0 Then GoTo 60
If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
GoSub 800: If fl1 = 0 Then GoTo 5
' n9 = n9 + 1: GoSub 2645 'Print results (selected numbers)
n9 = n9 + 1: GoSub 2650 'Print results (squares)
Erase b, c: GoTo 1000 'Print only first square
5 b(c(6)) = 0: c(6) = 0
60 b(c(10)) = 0: c(10) = 0
100 b(c(11)) = 0: c(11) = 0
110 b(c(15)) = 0: c(15) = 0
150 Next j15
b(c(16)) = 0: c(16) = 0
160 b(c(20)) = 0: c(20) = 0
200 Next j20
b(c(2)) = 0: c(2) = 0
20 b(c(5)) = 0: c(5) = 0
50 b(c(21)) = 0: c(21) = 0
210 b(c(22)) = 0: c(22) = 0
220 Next j22
b(c(3)) = 0: c(3) = 0
30 b(c(23)) = 0: c(23) = 0
230 Next j23
b(c(4)) = 0: c(4) = 0
40 b(c(24)) = 0: c(24) = 0
240 Next j24
b(c(1)) = 0: c(1) = 0
10 b(c(25)) = 0: c(25) = 0
250 Next j25
Erase b1, b, c
1000 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
y = MsgBox(t10, 0, "Routine Priem5c2")
End
' Double Check Identical Numbers
800 fl1 = 1
For j1 = 1 To 25
a2 = a(j1): If a2 = 0 Then GoTo 810
For j2 = (1 + j1) To 25
If a2 = a(j2) Then fl1 = 0: Return
Next j2
810 Next j1
Return
' Print results (selected numbers)
2645 For i1 = 1 To 25
Cells(n9, i1).Value = a(i1)
Next i1
Cells(n9, 26).Select
Cells(n9, 26).Value = s1
Cells(n9, 27).Value = Rcrd1a
Return
' Print results (squares)
2650 n2 = n2 + 1
If n2 = 5 Then
n2 = 1: k1 = k1 + 6: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 6
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = "MC = " + CStr(s1)
i3 = 0
For i1 = 1 To 5
For i2 = 1 To 5
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a(i3)
Next i2
Next i1
Return
End Sub