Vorige Pagina About the Author

' Constructs 12 x 12 Primme Number Associated Magic Squares composed of
' 8 Semi Magic Anti Symmetric Squares and
' 8 Semi Magic Anti Symmetric Complementar Squares

' Tested with Office 365 under Windows 10

Sub Composed12()

Dim a1(1200), b1(49803), a(9), b(49803), c(9), a12(144)

y = MsgBox("Locked", vbCritical, "Routine Composed12")
End
    
    n1 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs8"

    Sheets("Klad1").Select
    t1 = Timer

For j101 = 2 To 50
j100 = Cells(j101, 22).Value                    'Read Achievable Pair Collections 
n10 = 0

    GoSub 3010                                  'Read Prime Numbers From Sheet ShtNm1
    If nVar < 144 Then GoTo 1000

'   Generate Semi Magic Squares

    For j9 = m1 To m2                                                     'a(9)
    If b1(a1(j9)) = 0 Then GoTo 1090
    If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 1090
    a(9) = a1(j9)
   
    For j8 = m1 To m2                                                     'a(8)
    If b1(a1(j8)) = 0 Then GoTo 1080
    If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 1080
    a(8) = a1(j8)
  
        a(7) = s1 - a(8) - a(9):
        If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 1070:
        If b1(a(7)) = 0 Then GoTo 1070
        If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 1070
        
    For j6 = m1 To m2                                                     'a(6)
    If b1(a1(j6)) = 0 Then GoTo 1060
    If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 1060
    a(6) = a1(j6)
       
        a(5) = -s1 + a(6) + a(8) + 2 * a(9)
        If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 1050:
        If b1(a(5)) = 0 Then GoTo 1050
        If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 1050
        
        a(4) = 2 * s1 - 2 * a(6) - a(8) - 2 * a(9)
        If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 1040:
        If b1(a(4)) = 0 Then GoTo 1040
        If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 1040
        
        a(3) = s1 - a(6) - a(9)
        If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 1030:
        If b1(a(3)) = 0 Then GoTo 1030
        If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 1030
        
        a(2) = 2 * s1 - a(6) - 2 * a(8) - 2 * a(9)
        If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 1020:
        If b1(a(2)) = 0 Then GoTo 1020
        If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 1020
        
        a(1) = -2 * s1 + 2 * a(6) + 2 * a(8) + 3 * a(9)
        If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 1010:
        If b1(a(1)) = 0 Then GoTo 1010
        If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 1010
        
                          GoSub 950: If fl1 = 0 Then GoTo 1005  ' Anti Symmetric

                          n10 = n10 + 1
                          If n10 = 8 Then
                             GoSub 750                          ' Load Square Nr 8
                             GoSub 900                          ' Remove used primes from available primes
                             GoSub 850                          ' Double Check Identical Integers
                             If fl1 = 1 Then
                                    n9 = n9 + 1: GoSub 650      ' Print Composed Squares
                             End If
                             Erase b, c: GoTo 1000              ' Next Magic Sum
                          Else
                             GoSub 750                          ' Load Square Nr 1 ... 7
                             GoSub 900                          ' Remove used primes from available primes
                             Erase b, c: GoTo 1090
                          End If
5

1005    b(c(1)) = 0: c(1) = 0
1010    b(c(2)) = 0: c(2) = 0
1020    b(c(3)) = 0: c(3) = 0
1030    b(c(4)) = 0: c(4) = 0
1040    b(c(5)) = 0: c(5) = 0
1050    b(c(6)) = 0: c(6) = 0
1060    Next j6
        
        b(c(7)) = 0: c(7) = 0
1070    b(c(8)) = 0: c(8) = 0
1080    Next j8
        
        b(c(9)) = 0: c(9) = 0
1090    Next j9

1000  n10 = 0
      Erase b1, b, c
      Next j101

     t2 = Timer
    
     t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
     y = MsgBox(t10, 0, "Routine Composed12")

End

'    Transform and Assign Sub Squares

750  Select Case n10

        Case 1:
        
            a12(1) = a(3):  a12(2) = a(2):  a12(3) = a(1):
            a12(13) = a(6): a12(14) = a(5): a12(15) = a(4):
            a12(25) = a(9): a12(26) = a(8): a12(27) = a(7):
        
        Case 2:

            a12(4) = a(1):  a12(5) = a(2):  a12(6) = a(3):
            a12(16) = a(4): a12(17) = a(5): a12(18) = a(6):
            a12(28) = a(7): a12(29) = a(8): a12(30) = a(9):
       
        Case 3:
        
            a12(7) = a(3):  a12(8) = a(2):  a12(9) = a(1):
            a12(19) = a(6): a12(20) = a(5): a12(21) = a(4):
            a12(31) = a(9): a12(32) = a(8): a12(33) = a(7):
        
        Case 4:

            a12(10) = a(1): a12(11) = a(2): a12(12) = a(3):
            a12(22) = a(4): a12(23) = a(5): a12(24) = a(6):
            a12(34) = a(7): a12(35) = a(8): a12(36) = a(9):
        
        Case 5:
        
            a12(37) = a(9): a12(38) = a(8): a12(39) = a(7):
            a12(49) = a(6): a12(50) = a(5): a12(51) = a(4):
            a12(61) = a(3): a12(62) = a(2): a12(63) = a(1):
        
        Case 6:

            a12(40) = a(7): a12(41) = a(8): a12(42) = a(9):
            a12(52) = a(4): a12(53) = a(5): a12(54) = a(6):
            a12(64) = a(1): a12(65) = a(2): a12(66) = a(3):
 
        Case 7:
        
            a12(43) = a(9): a12(44) = a(8): a12(45) = a(7):
            a12(55) = a(6): a12(56) = a(5): a12(57) = a(4):
            a12(67) = a(3): a12(68) = a(2): a12(69) = a(1):
        
        Case 8:

            a12(46) = a(7): a12(47) = a(8): a12(48) = a(9):
            a12(58) = a(4): a12(59) = a(5): a12(60) = a(6):
            a12(70) = a(1): a12(71) = a(2): a12(72) = a(3):

'           Assign Associated Elements

            For i1 = 1 To 72
                a12(145 - i1) = Pr3 - a12(i1)
            Next i1

     End Select

     Return
     
'    Print results (squares 12 x 12)

650  n2 = n2 + 1
     If n2 = 2 Then
         n2 = 1: k1 = k1 + 13: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 13
     End If
     
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = CStr(s12)
    
     i3 = 0
     For i1 = 1 To 12
         For i2 = 1 To 12
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a12(i3)
         Next i2
     Next i1
    
     Return

'    Exclude solutions with identical numbers a12()

850  fl1 = 1
     For j1 = 1 To 144
        a20 = a12(j1)
        For j2 = (1 + j1) To 144
            If a20 = a12(j2) Then fl1 = 0: Return
        Next j2
     Next j1
     Return

'   Remove used primes a() from available primes b1()

900 For i1 = 1 To 9
        b1(a(i1)) = 0: b1(Pr3 - a(i1)) = 0
    Next i1
    Return
    
'   Check Pairs

950 fl1 = 1: n25 = 0
    For j1 = 1 To 9
       a20 = Pr3 - a(j1)                          'Complement
       For j2 = (1 + j1) To 9
            If a20 = a(j2) Then fl1 = 0: Return
       Next j2
    Next j1
    Return
     
'    Read Prime Numbers From Sheet Pairs8

3010 Pr3 = Sheets(ShtNm1).Cells(j100, 1).Value    'Pair Sum
     s1 = 3 * Pr3 / 2                             'MC3
     s12 = 6 * Pr3                                'MC12
     nVar = Sheets(ShtNm1).Cells(j100, 5).Value
    
     m1 = 1: m2 = nVar
    
     For i1 = m1 To m2
         a1(i1) = Sheets(ShtNm1).Cells(j100, i1 + 6).Value
     Next i1
     If a1(1) = 1 Then m1 = 2
    
     Erase b1
     For i1 = m1 To m2
         b1(a1(i1)) = a1(i1)
     Next i1
   
     Return

End Sub

Vorige Pagina About the Author