Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.32   Magic Squares (12 x 12)

14.32.1 Magic Squares, Concentric (12 x 12)

A 12th order Prime Number Concentric Magic Square consists of a Prime Number Concentric Magic Square of the 10th order with a border around it.

For Prime Number Concentric Magic Squares of order 12 with Magic Sum s12, it is convenient to split the supplementary rows and columns into parts summing to s4 = s12 / 3:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24
a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36
a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48
a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60
a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72
a73 a74 a75 a76 a77 a78 a79 a80 a81 a82 a83 a84
a85 a86 a87 a88 a89 a90 a91 a92 a93 a94 a95 a96
a97 a98 a99 a100 a101 a102 a103 a104 a105 a106 a107 a108
a109 a110 a111 a112 a113 a114 a115 a116 a117 a118 a119 a120
a121 a122 a123 a124 a125 a126 a127 a128 a129 a130 a131 a132
a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144

This results in following border equations:

a( 4) = s4 - a(3) - a( 2) - a( 1)
a( 8) = s4 - a(7) - a( 6) - a( 5)
a(12) = s4 - a(9) - a(10) - a(11)

a(144) = s4/2 - a( 1)
a(143) = s4/2 - a(11)
a(142) = s4/2 - a(10)
a(141) = s4/2 - a( 9)
a(140) = s4/2 - a( 8)
a(139) = s4/2 - a( 7)
a(138) = s4/2 - a( 6)
a(137) = s4/2 - a( 5)
a(136) = s4/2 - a( 4)
a(135) = s4/2 - a( 3)
a(134) = s4/2 - a( 2)
a(133) = s4/2 - a(12)

a(37) = s4 - a(  1) - a( 13) - a( 25)
a(85) = s4 - a( 49) - a( 61) - a( 73)
a(97) = s4 - a(109) - a(121) - a(133)

a( 24) = s4/2 - a( 13)
a( 36) = s4/2 - a( 25)
a( 48) = s4/2 - a( 37)
a( 60) = s4/2 - a( 49)
a( 72) = s4/2 - a( 61)
a( 84) = s4/2 - a( 73)
a( 96) = s4/2 - a( 85)
a(108) = s4/2 - a( 97)
a(120) = s4/2 - a(109)
a(132) = s4/2 - a(121)

which enable the development of a fast procedure to generate Prime Number Concentric Magic Squares of order 12 (ref. Priem12a).

Miscellaneous Prime Number Concentric Magic Squares of order 12, based on 10th order Concentric Magic Squares as discussed in Section 14.8.7, are shown in following attachments:

  • Concentric Magic Center Square                 (ref. Attachment 14.32.11)

  • Concentric Pan Magic Center Square             (ref. Attachment 14.32.12)
    (Embedded Associated Square)

Each square shown corresponds with numerous squares for the same Magic Sum.

14.32.2 Magic Squares, Bordered (12 x 12)

Based on the collections of 10th order Composed and miscellaneous Bordered Magic Squares, as discussed in Section 14.8.7 and Section 14.8.8 also following 12th order Bordered Magic Squares can be generated with routine Priem12a:

  • Composed Magic Center Squares:

    - Associated  , Simple Magic Sub Squares        (ref. Attachment 14.32.31)
    - Pan Magic   , Simple Magic Sub Squares        (ref. Attachment 14.32.32)
    - Composed    , Pan    Magic Sub Squares        (ref. Attachment 14.32.33)
    - Center Cross, Pan    Magic Sub Squares        (ref. Attachment 14.32.34)

  • Bordered Center Square with embedded:

    - Ultra Magic Square, Partly Compact            (ref. Attachment 14.32.21)
    - Ultra Magic Square, Compact                   (ref. Attachment 14.32.22)
    - Most Perfect Pan Magic Square                 (ref. Attachment 14.32.23)
    - Composed Square                               (ref. Attachment 14.32.24)
    - Composed Square, Associated                   (ref. Attachment 14.32.25)
    - Franklin Pan Magic Center Square              (ref. Attachment 14.32.29)
               Most Perfect Pan Magic Center Square
    - Ultra Magic Center Square                     (ref. Attachment 14.32.26)

  • Bordered Center Squares:

    - Split    Border with Concentric Center Square (ref. Attachment 14.32.27)
    - Composed Border with Associated Center Square (ref. Attachment 14.32.28)

It should be noted that the Attachments listed above contain only those solutions which could be found within 10 seconds.

Each square shown corresponds with numerous squares for the same Magic Sum.

14.32.3 Magic Squares, Inlaid (12 x 12)
        Order 4 Pan Magic Square Inlays

The 12th order Prime Number Inlaid Magic Square shown below, is composed out of a Concentric Border, an Associated Border and four each 4th order Embedded Pan Magic Squares with different Magic Sums.

Mc12 = 8820
17 283 1279 1361 41 409 1123 1367 163 383 1103 1291
593 1409 1297 719 563 241 181 503 659 1237 541 877
1117 1277 229 239 1093 1259 431 421 919 1109 373 353
1213 863 953 1399 89 379 601 1427 113 739 787 257
401 449 317 151 1181 1171 521 331 1009 1019 1201 1069
661 277 1321 1031 457 11 1327 701 839 13 1373 809
827 97 467 487 883 1163 43 47 1471 1499 1193 643
1051 269 613 1433 197 757 1447 1523 19 71 1021 419
991 683 617 337 1033 1013 59 31 1487 1483 607 479
823 1097 1303 743 887 67 1511 1459 83 7 193 647
947 929 233 811 967 1289 1229 907 751 173 61 523
179 1187 191 109 1429 1061 347 103 1307 1087 367 1453
s4
2820 2880
3000 3060

The method to generate the order 10 Inlaid Magic Center Square with Order 4 Embedded Pan Magic Squares with different Magic Sums has been discussed in Section 14.21.3.

The order 12 Bordered Magic Square shown above can be transformed into the Window Type Magic Square shown below:

Mc12 = 8820
17 283 1279 1361 41 409 1123 1367 163 383 1103 1291
593 229 239 1093 1259 1277 373 431 421 919 1109 877
1117 953 1399 89 379 863 787 601 1427 113 739 353
1213 317 151 1181 1171 449 1201 521 331 1009 1019 257
401 1321 1031 457 11 277 1373 1327 701 839 13 1069
661 1297 719 563 241 1409 541 181 503 659 1237 809
827 233 811 967 1289 929 61 1229 907 751 173 643
1051 467 487 883 1163 97 1193 43 47 1471 1499 419
991 613 1433 197 757 269 1021 1447 1523 19 71 479
823 617 337 1033 1013 683 607 59 31 1487 1483 647
947 1303 743 887 67 1097 193 1511 1459 83 7 523
179 1187 191 109 1429 1061 347 103 1307 1087 367 1453
s4
2820 2880
3000 3060

Attachment 14.32.3 page 1, shows for a few Magic Sums the first occurring Bordered Magic Square,

Attachment 14.32.3 page 2, shows the corresponding Window Type Magic Square.

Each square shown corresponds with numerous solutions, which can be obtained by selecting other aspects of the four inlays and variation of the borders (window).

14.32.4 Magic Squares, Inlaid (12 x 12)
        Order 5 Ultra Magic Square Inlays

The 12th order Prime Number Inlaid Magic Square shown below:

Mc12 = 39600
6581 6569 6491 3019 1009 907 277 379 2389 5861 5939 179
6329 5813 2753 857 4973 1019 5987 2699 1181 3251 2927 1811
4229 683 4799 1523 5153 3257 941 3011 3677 4967 3449 3911
2633 863 5657 3083 509 5303 2657 5717 3209 701 3761 5507
2087 2909 1013 4643 1367 5483 2969 1451 2741 3407 5477 6053
1871 5147 1193 5309 3413 353 3491 3167 5237 3719 431 6269
331 6553 1951 1789 4903 1759 6277 2677 2311 4567 1753 4729
547 1669 4783 3319 3673 3511 1597 3853 3307 4597 4231 4513
1093 439 5233 3391 1549 6343 1627 6151 3517 883 5407 3967
2689 3271 3109 3463 1999 5113 2803 2437 3727 3181 5437 2371
4789 5023 1879 4993 4831 229 5281 2467 4723 4357 757 271
6421 661 739 4211 6221 6323 5693 5591 3581 109 31 19
s5
15415 16045
16955 17585

is composed out of an Associated Border and four each 5th order Embedded Ultra Magic Squares with different Magic Sums.

The method to generate Order 12 Inlaid Magic Squares with Order 5 Embedded (Ultra) Magic Squares with different Magic Sums has been discussed in Section 14.21.4.

14.32.5 Magic Squares, Eccentric (12 x 12)

Also for Prime Number Eccentric Magic Squares of order 12 it is convenient to split the supplementary rows and columns into parts summing to s4 = s12 / 3.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24
a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36
a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48
a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60
a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72
a73 a74 a75 a76 a77 a78 a79 a80 a81 a82 a83 a84
a85 a86 a87 a88 a89 a90 a91 a92 a93 a94 a95 a96
a97 a98 a99 a100 a101 a102 a103 a104 a105 a106 a107 a108
a109 a110 a111 a112 a113 a114 a115 a116 a117 a118 a119 a120
a121 a122 a123 a124 a125 a126 a127 a128 a129 a130 a131 a132
a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144

This enables, based on the same principles, the development of a fast procedure (ref. Priem12b):

  • to read the previously generated Eccentric Magic Squares of order 10;
  • to complete the Main Diagonal and determine the related Border Pairs;
  • to generate, based on the remainder of the available pairs, a suitable Corner Square of order 4;
  • to complete the Eccentric Magic Square of order 12 with the two remaining 2 x 4 Magic Rectangles.

Attachment 14.32.2 shows, based on the 10th order Eccentric Magic Squares as discussed in Section 14.8.11, one Prime Number Eccentric Magic Square for some of the occurring Magic Sums.

Each square shown corresponds with numerous squares for the same Magic Sum.

14.32.6 Magic Squares, Composed (12 x 12)
        Center Cross, Order 5 (Pan) Magic Sub Squares

The 12th order Prime Number Composed Magic Square shown below:

Mc12 = 31500
19 1993 4783 3307 3023 449 4801 73 4241 5009 3041 761
3607 2957 3019 1999 1543 4987 263 3119 941 773 4273 4019
4999 1549 367 3257 2953 5011 239 4973 4051 2129 1019 953
17 3253 4933 4549 373 257 4993 29 1031 5153 4751 2161
4483 3373 23 13 5233 457 4793 4931 2861 61 41 5231
227 5101 5119 79 389 53 5059 4919 5113 173 229 5039
5023 149 131 5171 4861 191 5197 331 137 5077 5021 211
67 1489 4457 3469 3643 4817 433 271 1699 5099 3877 2179
4007 3343 3559 1459 757 4969 281 3889 3499 2251 1867 1619
4951 727 307 3881 3259 4957 293 3847 1787 409 3511 3571
181 3797 4651 4219 277 521 4729 31 3583 5167 3767 577
3919 3769 151 97 5189 4831 419 5087 2557 199 103 5179

is an example of a Prime Number Magic Square with Magic Sum s12, composed of:

  • Four each 5th order (Pan) Magic Corner Squares (s5 = 5 * s12 / 12),
  • Twentytwo supplementary pairs, each summing to 2 * s12 / 12

Subject Composed Magic Squares can be obtained by transformation of Bordered Magic Squares with Composed Magic Center Squares as discussed in Section 14.32.2 above.

Attachment 14.32.35 shows for a few Magic Sums the first occurring 12th order Prime Number Composed Magic Square.

14.32.7 Magic Squares, Composed (12 x 12)
        Order 4 Pan Magic Sub Squares

The 12th order Prime Number Composed Magic Square shown below:

Mc12 = 13860
59 181 2113 2267
2083 2297 29 211
197 43 2251 2129
2281 2099 227 13
73 173 2131 2243
2081 2293 23 223
179 67 2237 2137
2287 2087 229 17
167 379 1871 2203
1801 2273 97 449
439 107 2143 1931
2213 1861 509 37
397 317 1877 2029
1637 2269 157 557
433 281 1913 1993
2153 1753 673 41
149 683 1609 2179
1549 2239 89 743
701 131 2161 1627
2221 1567 761 71
521 463 1657 1979
1429 2207 293 691
653 331 1789 1847
2017 1619 881 103
523 499 1697 1901
1487 2111 313 709
613 409 1787 1811
1997 1601 823 199
337 1021 1259 2003
1193 2069 271 1087
1051 307 1973 1289
2039 1223 1117 241
811 827 1319 1663
929 2053 421 1217
991 647 1499 1483
1889 1093 1381 257

Contains 9 ea Order 4 Pan Magic Squares with the same Magic Sum (Mc4 = 4620).

A method to generate Magic Squares composed of order 4 Pan Magic Squares with the same Magic Sum  has been discussed in Section 14.11.6.

A method to generate Magic Squares composed of order 4 Pan Magic Squares with differnt Magic Sums has been discussed in Section 14.21.5.

14.32.8 Magic Squares, Composed (12 x 12)
        Order 3 Semi Magic Sub Squares

The 12th order Prime Number Composed Magic Square shown below:

Mc12 = 65772
8111 8273 59
7109 641 8693
1223 7529 7691
311 10613 5519
5399 191 10853
10733 5639 71
349 10651 5443
5323 229 10891
10771 5563 109
4261 5701 6481
4441 2221 9781
7741 8521 181
659 8741 7043
6833 449 9161
8951 7253 239
7019 8831 593
3371 3323 9749
6053 4289 6101
4759 5521 6163
4093 2689 9661
7591 8233 619
4831 5659 5953
3853 2731 9859
7759 8053 631
2039 7643 6761
6173 1451 8819
8231 7349 863
1301 10223 4919
4799 1181 10463
10343 5039 1061
6203 9011 1229
3011 4229 9203
7229 3203 6011
6719 3593 6131
3413 4001 9029
6311 8849 1283
5569 6823 4051
2011 3529 10903
8863 6091 1489
1933 8629 5881
5689 1741 9013
8821 6073 1549
4789 6703 4951
3433 3271 9739
8221 6469 1753
7883 5861 2699
4481 3389 8573
4079 7193 5171

Contains 16 ea Order 3 Semi Magic Squares with the same Magic Sum (Mc3 = 16443).

A method to generate Magic Squares composed of order 3 Semi Magic Squares with the same Magic Sum  has been discussed in Section 14.11.3.

A method to generate Magic Squares composed of order 3 Semi Magic Squares with differnt Magic Sums has been discussed in Section 14.21.5.

14.32.9 Composed Magic Squares (12 x 12)
        Pan Magic Sub Squares (6 x 6)


Prime Number Magic Squares of order 12 - with Magic Sum 2 * s1 - can be composed out of 6th order Prime Number Pan Magic Squares with Magic Sum s1.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24
a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36
a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48
a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60
a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72
a73 a74 a75 a76 a77 a78 a79 a80 a81 a82 a83 a84
a85 a86 a87 a88 a89 a90 a91 a92 a93 a94 a95 a96
a97 a98 a99 a100 a101 a102 a103 a104 a105 a106 a107 a108
a109 a110 a111 a112 a113 a114 a115 a116 a117 a118 a119 a120
a121 a122 a123 a124 a125 a126 a127 a128 a129 a130 a131 a132
a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144

In section 14.4.12, a procedure was developed to generate 6th order Prime Number Pan Magic Squares (Magic Sum s1) composed of Semi Magic Sub Squsres.

With some minor modifications subject procedure can be used to find a set of 4 (or more) Prime Number Pan Magic Squares with Magic Sum s1 - each containing 36 different Prime Numbers.

Attachment 14.32.81 contains a few of such sets which could be found by means of procedure Priem6e3.

Attachment 14.32.83 contains miscellaneous Prime Number Magic Squares composed of Pan Magic Sub Squares as generated with procedure Priem6e3.

Each square shown corresponds with numerous Composed Magic Squares with the same Magic Sum.

14.32.10 Pan Magic Squares (12 x 12)
         Pan Magic Square Inlays (6 x 6)


Prime Number Magic Squares composed of Pan Magic Sub Squares, as discussed in Section 14.32.9 above, can be transformed into (Inlaid) Pan Magic Squares as illustrated below:

3049 2269 37 1987 2797 571 2017 3067 271 2801 2357 197
2293 1303 1759 3259 859 1237 3181 631 1543 2447 1289 1619
13 1783 3559 109 1699 3547 157 1657 3541 107 1709 3539
1583 773 2999 521 1301 3533 769 1213 3373 1553 503 3299
311 2711 2333 1277 2267 1811 1123 2281 1951 389 2939 2027
3461 1871 23 3557 1787 11 3463 1861 31 3413 1913 29
3253 1429 673 2003 2843 509 3319 1327 709 2287 2521 547
1999 2203 1153 3083 953 1319 1669 2557 1129 2887 1171 1297
103 1723 3529 269 1559 3527 367 1471 3517 181 1663 3511
1567 727 3061 317 2141 2897 1283 1049 3023 251 2243 2861
487 2617 2251 1571 1367 2417 683 2399 2273 1901 1013 2441
3301 2011 43 3467 1847 41 3389 1907 59 3203 2099 53
3049 2017 2269 3067 37 271 1987 2801 2797 2357 571 197
3253 3319 1429 1327 673 709 2003 2287 2843 2521 509 547
2293 3181 1303 631 1759 1543 3259 2447 859 1289 1237 1619
1999 1669 2203 2557 1153 1129 3083 2887 953 1171 1319 1297
13 157 1783 1657 3559 3541 109 107 1699 1709 3547 3539
103 367 1723 1471 3529 3517 269 181 1559 1663 3527 3511
1583 769 773 1213 2999 3373 521 1553 1301 503 3533 3299
1567 1283 727 1049 3061 3023 317 251 2141 2243 2897 2861
311 1123 2711 2281 2333 1951 1277 389 2267 2939 1811 2027
487 683 2617 2399 2251 2273 1571 1901 1367 1013 2417 2441
3461 3463 1871 1861 23 31 3557 3413 1787 1913 11 29
3301 3389 2011 1907 43 59 3467 3203 1847 2099 41 53

The resulting (Inlaid) Pan Magic Squares are Four Way V type Zig Zag and Complete.

Attachment 14.32.85 shows the Pan Magic Squares, which can be obtained by transformation of the Composed Magic Squares as shown in Attachment 14.32.83.

Each square shown corresponds with numerous (Inlaid) Pan Magic Squares with the same Magic Sum.

14.32.11 Associated Magic Squares (12 x 12)
         Composed of Simple Magic Squares (6 x 6)


Associated Magic Squares, composed of four each Simple Magic Squares, contain two sets of Complementary Anti Symmetric Magic Squares.

  • Attachment 14.32.41 shows examples of such suitable 6th order Anti Symmetric Magic Squares,
    which are composed of order 3 Semi Magic Anti Symmetric Sub Squares;

  • Attachment 14.32.42 shows for miscellaneous Magic Sums the related 12th order Associated Magic Squares,
    which can be generated with procedure Composed12;

  • Attachment 14.32.43 shows the corresponding Pan Magic and Complete Magic Squares (Eulers Transformation).

Subject Composed Magic Squares can be transformed into (Inlaid) Four Way V type ZigZag Magic Squares by means of the transformation illustrated below for respectively:

Inlaid Four Way V type ZigZag Associated Magic Square B1, Mc12 = 55692:

A1 (Associated)
5813 7589 521 2719 5503 5701 6553 6949 421 463 8629 4831
8069 281 5573 4363 1381 8179 7309 241 6373 4639 271 9013
41 6053 7829 6841 7039 43 61 6733 7129 8821 5023 79
349 7411 6163 7723 5581 619 1049 7481 5393 6029 5981 1913
8053 2239 3631 5281 769 7873 7703 3359 2861 4481 2663 6779
5521 4273 4129 919 7573 5431 5171 3083 5669 3413 5279 5231
4051 4003 5869 3613 6199 4111 3851 1709 8363 5153 5009 3761
2503 6619 4801 6421 5923 1579 1409 8513 4001 5651 7043 1229
7369 3301 3253 3889 1801 8233 8663 3701 1559 3119 1871 8933
9203 4259 461 2153 2549 9221 9239 2243 2441 1453 3229 9241
269 9011 4643 2909 9041 1973 1103 7901 4919 3709 9001 1213
4451 653 8819 8861 2333 2729 3581 3779 6563 8761 1693 3469
B1 (Associated)
5813 6553 7589 6949 521 421 2719 463 5503 8629 5701 4831
4051 3851 4003 1709 5869 8363 3613 5153 6199 5009 4111 3761
8069 7309 281 241 5573 6373 4363 4639 1381 271 8179 9013
2503 1409 6619 8513 4801 4001 6421 5651 5923 7043 1579 1229
41 61 6053 6733 7829 7129 6841 8821 7039 5023 43 79
7369 8663 3301 3701 3253 1559 3889 3119 1801 1871 8233 8933
349 1049 7411 7481 6163 5393 7723 6029 5581 5981 619 1913
9203 9239 4259 2243 461 2441 2153 1453 2549 3229 9221 9241
8053 7703 2239 3359 3631 2861 5281 4481 769 2663 7873 6779
269 1103 9011 7901 4643 4919 2909 3709 9041 9001 1973 1213
5521 5171 4273 3083 4129 5669 919 3413 7573 5279 5431 5231
4451 3581 653 3779 8819 6563 8861 8761 2333 1693 2729 3469

Inlaid Four Way V type ZigZag Croswise Symmetric Magic Square B2, Mc12 = 55692:

Mc12 = A2 (PM, Complete)
5813 7589 521 2719 5503 5701 4831 8629 463 421 6949 6553
8069 281 5573 4363 1381 8179 9013 271 4639 6373 241 7309
41 6053 7829 6841 7039 43 79 5023 8821 7129 6733 61
349 7411 6163 7723 5581 619 1913 5981 6029 5393 7481 1049
8053 2239 3631 5281 769 7873 6779 2663 4481 2861 3359 7703
5521 4273 4129 919 7573 5431 5231 5279 3413 5669 3083 5171
4451 653 8819 8861 2333 2729 3469 1693 8761 6563 3779 3581
269 9011 4643 2909 9041 1973 1213 9001 3709 4919 7901 1103
9203 4259 461 2153 2549 9221 9241 3229 1453 2441 2243 9239
7369 3301 3253 3889 1801 8233 8933 1871 3119 1559 3701 8663
2503 6619 4801 6421 5923 1579 1229 7043 5651 4001 8513 1409
4051 4003 5869 3613 6199 4111 3761 5009 5153 8363 1709 3851
Mc12 = B2 (Cross Symm)
5813 4831 7589 8629 521 463 2719 421 5503 6949 5701 6553
4451 3469 653 1693 8819 8761 8861 6563 2333 3779 2729 3581
8069 9013 281 271 5573 4639 4363 6373 1381 241 8179 7309
269 1213 9011 9001 4643 3709 2909 4919 9041 7901 1973 1103
41 79 6053 5023 7829 8821 6841 7129 7039 6733 43 61
9203 9241 4259 3229 461 1453 2153 2441 2549 2243 9221 9239
349 1913 7411 5981 6163 6029 7723 5393 5581 7481 619 1049
7369 8933 3301 1871 3253 3119 3889 1559 1801 3701 8233 8663
8053 6779 2239 2663 3631 4481 5281 2861 769 3359 7873 7703
2503 1229 6619 7043 4801 5651 6421 4001 5923 8513 1579 1409
5521 5231 4273 5279 4129 3413 919 5669 7573 3083 5431 5171
4051 3761 4003 5009 5869 5153 3613 8363 6199 1709 4111 3851

Each square shown above and in the referred attachments corresponds with numerous squares for the same Magic Sum.

Notes:
For the Associated Magic Squares B1 also the Semi Diagonals sum to the Magic Sum.
For the Crosswise Symmetric Magic Squares B2 also half of the Broken Diagonals sum to the Magic Sum.

14.32.12 Magic Squares, Composed (12 x 12)
         Order 6 Magic Cube Based

Order 12 Prime Number Magic Squares composed of Order 6 Magic Sub Squares can be constructed based on Prime Number Perfect Concentric Magic Cubes, as deducted in Section 7.8 of Chapter 'Prime Number Magic Cubes'.

A typical example of an order 12 Prime Number Composed Magic Squares (Mc12 = 36036), based on the planes of a Prime Number Perfect Magic Cube of half the Magic Sum, is shown below.

Mc12 = 36036
3037 4909 503 1223 5407 2939 5639 1069 3917 523 5903 967
4127 263 5923 3623 2203 1879 1033 433 4547 3449 3583 4973
839 5647 499 2777 3089 5167 3049 5927 2659 67 3359 2957
919 2543 3323 5413 733 5087 1709 1423 4133 5153 1303 4297
5879 3559 2267 199 5987 127 1549 4229 673 3343 3767 4457
3217 1097 5503 4783 599 2819 5039 4937 2089 5483 103 367
997 157 5839 1609 4219 5197 3187 227 5953 3733 2129 2789
5519 5573 1459 2557 2423 487 557 5743 83 2383 3803 5449
3529 79 3347 5939 2647 2477 4337 359 5507 3229 2917 1669
5297 4583 1873 853 4703 709 2797 3463 2683 593 5273 3209
1867 1777 5333 2663 2239 4139 4073 2447 3739 5807 19 1933
809 5849 167 4397 1787 5009 3067 5779 53 2273 3877 2969

It can be noticed that also the Semi Diagonals and the Main Bent Diagonals sum to the Magic Sum Mc12.

Attachment 14.32.8 shows for miscellaneous Magic Sums a few of the Composed Magic Squares described above.

14.32.13 Summary

The obtained results regarding the 12th order Prime Number Magic Squares and related sub squares, as deducted and discussed in previous sections, are summarized in following table:

Type

Characteristics

Subroutine

Results

Concentric

-

Priem12a

Attachment 14.32.11

Bordered

Miscellaneous Types

Priem12a

Ref. Sect. 14.32.2

Eccentric

-

Priem12b

Attachment 14.32.2

Composed

Order 6 Magic Cube Based

-

Attachment 14.32.8

Center Cross, Pan Magic Sub Squares

-

Attachment 14.32,35

Composed

Associated

Composed12

Attachment 14.32,42

Pan Magic, Complete

Euler

Attachment 14.32.43

Composed

Pan Magic Sub Squares

Priem6e3

Attachment 14.32,83

Pan Magic

Pan Magic Square Inlays

-

Attachment 14.32,85

Inlaid

Pan Magic Square Inlays

-

Attachment 14.32,3

-

-

-

-

Comparable routines as listed above, can be used to generate miscellaneous Prime Number Composed Magic Squares, which will be described in following sections.


Vorige Pagina Volgende Pagina Index About the Author