Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.32.1 Magic Squares, Concentric (12 x 12)
A 12th order Prime Number Concentric Magic Square consists of a Prime Number Concentric Magic Square of the 10th order with a border around it.
This results in following border equations:
which enable the development of a fast procedure to generate Prime Number Concentric Magic Squares of order 12 (ref. Priem12a).
Each square shown corresponds with numerous squares for the same Magic Sum.
14.32.2 Magic Squares, Bordered (12 x 12)
Based on the collections of 10th order Composed and miscellaneous Bordered Magic Squares, as discussed in Section 14.8.7 and Section 14.8.8 also following 12th order Bordered Magic Squares can be generated with routine Priem12a:
It should be noted that the Attachments listed above contain only those solutions which could be found within 10 seconds.
14.32.3 Magic Squares, Inlaid (12 x 12) The 12th order Prime Number Inlaid Magic Square shown below, is composed out of a Concentric Border, an Associated Border and four each 4th order Embedded Pan Magic Squares with different Magic Sums.
The method to generate the order 10 Inlaid Magic Center Square with Order 4 Embedded Pan Magic Squares with different Magic Sums
has been discussed in Section 14.21.3.
Attachment 14.32.3 page 1, shows for a few Magic Sums the first occurring Bordered Magic Square,
14.32.4 Magic Squares, Inlaid (12 x 12) The 12th order Prime Number Inlaid Magic Square shown below:
is composed out of an Associated Border and four each 5th order Embedded Ultra Magic Squares with different Magic Sums.
14.32.5 Magic Squares, Eccentric (12 x 12)
Also for Prime Number Eccentric Magic Squares of order 12 it is convenient to split the supplementary rows and columns into parts summing to s4 = s12 / 3.
This enables, based on the same principles, the development of a fast procedure (ref. Priem12b):
Attachment 14.32.2 shows,
based on the 10th order Eccentric Magic Squares as discussed in Section 14.8.11,
one Prime Number Eccentric Magic Square for some of the occurring Magic Sums.
14.32.6 Magic Squares, Composed (12 x 12) The 12th order Prime Number Composed Magic Square shown below: Mc12 = 31500 is an example of a Prime Number Magic Square with Magic Sum s12, composed of:
Subject Composed Magic Squares can be obtained by transformation of Bordered Magic Squares with Composed Magic Center Squares
as discussed in Section 14.32.2 above.
Attachment 14.32.35 shows for a few Magic Sums the first occurring 12th order Prime Number Composed Magic Square.
14.32.7 Magic Squares, Composed (12 x 12) The 12th order Prime Number Composed Magic Square shown below: Mc12 = 13860
Contains 9 ea Order 4 Pan Magic Squares with the same Magic Sum (Mc4 = 4620).
14.32.8 Magic Squares, Composed (12 x 12) The 12th order Prime Number Composed Magic Square shown below: Mc12 = 65772
Contains 16 ea Order 3 Semi Magic Squares with the same Magic Sum (Mc3 = 16443).
14.32.9 Composed Magic Squares (12 x 12) Prime Number Magic Squares of order 12 - with Magic Sum 2 * s1 - can be composed out of 6th order Prime Number Pan Magic Squares with Magic Sum s1.
In section 14.4.12, a procedure was developed to generate 6th order Prime Number Pan Magic Squares (Magic Sum s1) composed of Semi Magic Sub Squsres.
14.32.10 Pan Magic Squares (12 x 12) Prime Number Magic Squares composed of Pan Magic Sub Squares, as discussed in Section 14.32.9 above, can be transformed into (Inlaid) Pan Magic Squares as illustrated below: |
3049 2269 37 1987 2797 571 2017 3067 271 2801 2357 197 2293 1303 1759 3259 859 1237 3181 631 1543 2447 1289 1619 13 1783 3559 109 1699 3547 157 1657 3541 107 1709 3539 1583 773 2999 521 1301 3533 769 1213 3373 1553 503 3299 311 2711 2333 1277 2267 1811 1123 2281 1951 389 2939 2027 3461 1871 23 3557 1787 11 3463 1861 31 3413 1913 29 3253 1429 673 2003 2843 509 3319 1327 709 2287 2521 547 1999 2203 1153 3083 953 1319 1669 2557 1129 2887 1171 1297 103 1723 3529 269 1559 3527 367 1471 3517 181 1663 3511 1567 727 3061 317 2141 2897 1283 1049 3023 251 2243 2861 487 2617 2251 1571 1367 2417 683 2399 2273 1901 1013 2441 3301 2011 43 3467 1847 41 3389 1907 59 3203 2099 53
3049 2017 2269 3067 37 271 1987 2801 2797 2357 571 197 3253 3319 1429 1327 673 709 2003 2287 2843 2521 509 547 2293 3181 1303 631 1759 1543 3259 2447 859 1289 1237 1619 1999 1669 2203 2557 1153 1129 3083 2887 953 1171 1319 1297 13 157 1783 1657 3559 3541 109 107 1699 1709 3547 3539 103 367 1723 1471 3529 3517 269 181 1559 1663 3527 3511 1583 769 773 1213 2999 3373 521 1553 1301 503 3533 3299 1567 1283 727 1049 3061 3023 317 251 2141 2243 2897 2861 311 1123 2711 2281 2333 1951 1277 389 2267 2939 1811 2027 487 683 2617 2399 2251 2273 1571 1901 1367 1013 2417 2441 3461 3463 1871 1861 23 31 3557 3413 1787 1913 11 29 3301 3389 2011 1907 43 59 3467 3203 1847 2099 41 53
The resulting (Inlaid) Pan Magic Squares are Four Way V type Zig Zag and Complete.
14.32.11 Associated Magic Squares (12 x 12) Associated Magic Squares, composed of four each Simple Magic Squares, contain two sets of Complementary Anti Symmetric Magic Squares.
Subject Composed Magic Squares can be transformed into (Inlaid) Four Way V type ZigZag Magic Squares by means of the transformation
illustrated below for respectively:
Inlaid Four Way V type ZigZag Associated Magic Square B1, Mc12 = 55692: |
A1 (Associated)
5813 7589 521 2719 5503 5701 6553 6949 421 463 8629 4831 8069 281 5573 4363 1381 8179 7309 241 6373 4639 271 9013 41 6053 7829 6841 7039 43 61 6733 7129 8821 5023 79 349 7411 6163 7723 5581 619 1049 7481 5393 6029 5981 1913 8053 2239 3631 5281 769 7873 7703 3359 2861 4481 2663 6779 5521 4273 4129 919 7573 5431 5171 3083 5669 3413 5279 5231 4051 4003 5869 3613 6199 4111 3851 1709 8363 5153 5009 3761 2503 6619 4801 6421 5923 1579 1409 8513 4001 5651 7043 1229 7369 3301 3253 3889 1801 8233 8663 3701 1559 3119 1871 8933 9203 4259 461 2153 2549 9221 9239 2243 2441 1453 3229 9241 269 9011 4643 2909 9041 1973 1103 7901 4919 3709 9001 1213 4451 653 8819 8861 2333 2729 3581 3779 6563 8761 1693 3469 B1 (Associated)
5813 6553 7589 6949 521 421 2719 463 5503 8629 5701 4831 4051 3851 4003 1709 5869 8363 3613 5153 6199 5009 4111 3761 8069 7309 281 241 5573 6373 4363 4639 1381 271 8179 9013 2503 1409 6619 8513 4801 4001 6421 5651 5923 7043 1579 1229 41 61 6053 6733 7829 7129 6841 8821 7039 5023 43 79 7369 8663 3301 3701 3253 1559 3889 3119 1801 1871 8233 8933 349 1049 7411 7481 6163 5393 7723 6029 5581 5981 619 1913 9203 9239 4259 2243 461 2441 2153 1453 2549 3229 9221 9241 8053 7703 2239 3359 3631 2861 5281 4481 769 2663 7873 6779 269 1103 9011 7901 4643 4919 2909 3709 9041 9001 1973 1213 5521 5171 4273 3083 4129 5669 919 3413 7573 5279 5431 5231 4451 3581 653 3779 8819 6563 8861 8761 2333 1693 2729 3469
Inlaid Four Way V type ZigZag Croswise Symmetric Magic Square B2, Mc12 = 55692: |
Mc12 = A2 (PM, Complete)
5813 7589 521 2719 5503 5701 4831 8629 463 421 6949 6553 8069 281 5573 4363 1381 8179 9013 271 4639 6373 241 7309 41 6053 7829 6841 7039 43 79 5023 8821 7129 6733 61 349 7411 6163 7723 5581 619 1913 5981 6029 5393 7481 1049 8053 2239 3631 5281 769 7873 6779 2663 4481 2861 3359 7703 5521 4273 4129 919 7573 5431 5231 5279 3413 5669 3083 5171 4451 653 8819 8861 2333 2729 3469 1693 8761 6563 3779 3581 269 9011 4643 2909 9041 1973 1213 9001 3709 4919 7901 1103 9203 4259 461 2153 2549 9221 9241 3229 1453 2441 2243 9239 7369 3301 3253 3889 1801 8233 8933 1871 3119 1559 3701 8663 2503 6619 4801 6421 5923 1579 1229 7043 5651 4001 8513 1409 4051 4003 5869 3613 6199 4111 3761 5009 5153 8363 1709 3851 Mc12 = B2 (Cross Symm)
5813 4831 7589 8629 521 463 2719 421 5503 6949 5701 6553 4451 3469 653 1693 8819 8761 8861 6563 2333 3779 2729 3581 8069 9013 281 271 5573 4639 4363 6373 1381 241 8179 7309 269 1213 9011 9001 4643 3709 2909 4919 9041 7901 1973 1103 41 79 6053 5023 7829 8821 6841 7129 7039 6733 43 61 9203 9241 4259 3229 461 1453 2153 2441 2549 2243 9221 9239 349 1913 7411 5981 6163 6029 7723 5393 5581 7481 619 1049 7369 8933 3301 1871 3253 3119 3889 1559 1801 3701 8233 8663 8053 6779 2239 2663 3631 4481 5281 2861 769 3359 7873 7703 2503 1229 6619 7043 4801 5651 6421 4001 5923 8513 1579 1409 5521 5231 4273 5279 4129 3413 919 5669 7573 3083 5431 5171 4051 3761 4003 5009 5869 5153 3613 8363 6199 1709 4111 3851
Each square shown above and in the referred attachments corresponds with numerous squares for the same Magic Sum.
14.32.12 Magic Squares, Composed (12 x 12)
Order 12 Prime Number Magic Squares composed of Order 6 Magic Sub Squares can be constructed based on Prime Number Perfect Concentric Magic Cubes, as deducted in
Section 7.8 of Chapter 'Prime Number Magic Cubes'.
|
Mc12 = 36036
3037 4909 503 1223 5407 2939 5639 1069 3917 523 5903 967 4127 263 5923 3623 2203 1879 1033 433 4547 3449 3583 4973 839 5647 499 2777 3089 5167 3049 5927 2659 67 3359 2957 919 2543 3323 5413 733 5087 1709 1423 4133 5153 1303 4297 5879 3559 2267 199 5987 127 1549 4229 673 3343 3767 4457 3217 1097 5503 4783 599 2819 5039 4937 2089 5483 103 367 997 157 5839 1609 4219 5197 3187 227 5953 3733 2129 2789 5519 5573 1459 2557 2423 487 557 5743 83 2383 3803 5449 3529 79 3347 5939 2647 2477 4337 359 5507 3229 2917 1669 5297 4583 1873 853 4703 709 2797 3463 2683 593 5273 3209 1867 1777 5333 2663 2239 4139 4073 2447 3739 5807 19 1933 809 5849 167 4397 1787 5009 3067 5779 53 2273 3877 2969
It can be noticed that also the Semi Diagonals and the Main Bent Diagonals sum to the Magic Sum Mc12.
The obtained results regarding the 12th order Prime Number Magic Squares and related sub squares, as deducted and discussed in previous sections, are summarized in following table: |
Type
Characteristics
Subroutine
Results
Concentric
-
Bordered
Miscellaneous Types
Eccentric
-
Composed
Order 6 Magic Cube Based
-
Center Cross, Pan Magic Sub Squares
-
Composed
Associated
Pan Magic, Complete
Euler
Composed
Pan Magic Sub Squares
Pan Magic
Pan Magic Square Inlays
-
Inlaid
Pan Magic Square Inlays
-
-
-
-
-
Comparable routines as listed above, can be used to generate miscellaneous Prime Number Composed Magic Squares,
which will be described in following sections.
|
Index | About the Author |