which results, after deduction, in following set of linear equations describing the 'Almost Perfect Magic Cubes' as found by Walter Trump:
a(61) = 130 - a(62) - a(63) - a(64)
a(57) = 130 - a(58) - a(59) - a(60)
a(56) = 65 + a(58) - a(63) - a(64)
a(55) = -65 + a(60) + a(62) + a(64)
a(54) = 130 - a(55) - a(58) - a(59)
a(53) = -65 + a(59) + a(63) + a(64)
a(52) = 65 - a(58) - a(60) + a(63)
a(51) = 130 - a(53) - a(60) - a(62)
a(50) = -65 + a(59) + a(60) + a(64)
a(49) = -65 + a(58) + a(60) + a(62)
a(46) = a(47) - a(61) + a(64)
a(45) = 130 - a(46) - a(47) - a(48)
a(44) = 130 - a(47) - a(48) - 0.5 * a(58) + 0.5 * a(59) - 0.5 * a(62) + 0.5 * a(63) - a(64)
a(43) = 260 - a(44) - a(47) - a(48) - a(58) - a(60) - a(62) - a(64)
a(42) = 130 - a(43) - a(62) - a(63)
a(41) = - a(44) + a(62) + a(63)
a(40) = 65 + a(42) - a(47) - a(48)
a(39) = 65 - a(41) + a(47) + a(48) - 2 * a(61)
a(38) = - a(39) + a(62) + a(63)
a(37) = 130 - a(40) - a(62) - a(63)
a(36) = 130 - a(40) - a(44) - a(48)
a(35) = 130 - a(39) - a(43) - a(47)
a(34) = 130 - a(35) - 2 * a(47) + a(61) - a(64)
a(33) = 130 - a(48) - a(51) - a(62)
a(32) = 65 - a(48)
a(31) = 65 - a(47)
a(30) = 65 - a(46)
a(29) = 65 - a(45)
a(28) = 65 - a(44)
a(27) = 65 - a(43)
a(26) = 65 - a(42)
a(25) = 65 - a(41)
|
a(24) = 65 - a(40)
a(23) = 65 - a(39)
a(22) = 65 - a(38)
a(21) = 65 - a(37)
a(20) = 65 - a(36)
a(19) = 65 - a(35)
a(18) = 65 - a(34)
a(17) = 65 - a(33)
|
a(16) = 65 - a(64)
a(15) = 65 - a(63)
a(14) = 65 - a(62)
a(13) = 65 - a(61)
a(12) = 65 - a(60)
a(11) = 65 - a(59)
a(10) = 65 - a(58)
a( 9) = 65 - a(57)
|
a( 8) = 65 - a(56)
a( 7) = 65 - a(55)
a( 6) = 65 - a(54)
a( 5) = 65 - a(53)
a( 4) = 65 - a(52)
a( 3) = 65 - a(51)
a( 2) = 65 - a(50)
a( 1) = 65 - a(49)
|
The linear equations shown above, are ready to be solved, for the Magic Constant 130.
The solutions can be obtained by guessing:
a(47), a(48), a(58) ... a(60) and a(62) ... a(64)
and filling out these guesses in the abovementioned equations.
For distinct integers also following relations are applicable:
0 < a(i) =< 64 for i = 1, 2, ... 46, 49 ... 57 and 61
Int(a(i)) = a(i) for i = 44
a(i) ≠ a(j) for i ≠ j
which have been incorporated in an optimized guessing routine (MgcCube4c).
Subject guessing routine produced 184320 (= 64 * 15 * 48 * 4) Magic Cubes within 2.7 hours, of which the first 192 are shown in Attachment 3.2.1 and Attachment 3.2.2.
3.2.2 Almost Perfect Cubes, Generalised
If only the numbers a(i), i = 1 ... 64 for each of the rows, columns and (long) plane diagonals of the 12 orthogonal planes
sum to the same constant (130) the linear equations shown in section 3.2 above can be deducted to:
a(61) = 130 - a(62) - a(63) - a(64)
a(57) = 130 - a(58) - a(59) - a(60)
a(55) = -130 + a(56) - a(58) + a(60) + a(62) + a(63) + 2 * a(64)
a(54) = 130 - a(55) - a(58) - a(59)
a(53) = - a(56) + a(58) + a(59)
a(52) = 130 - a(56) - a(60) - a(64)
a(51) = 130 - a(55) - a(59) - a(63)
a(50) = a(55) + a(59) - a(62)
a(49) = a(55) + a(58) - a(64)
a(45) = 130 - a(46) - a(47) - a(48)
a(43) = 130 - a(44) - a(46) - a(48) - a(58) - a(60) + a(63) + a(64)
a(42) = 130 - a(43) - a(62) - a(63)
a(41) = - a(44) + a(62) + a(63)
a(40) = 130 + a(42) - a(47) - a(48) - a(56) + a(58) - a(63) - a(64)
a(39) = 130 - a(43) - a(56) - a(60)
a(38) = - a(42) + a(56) + a(60)
a(37) = 130 - a(40) - a(62) - a(63)
a(36) = 130 - a(40) - a(44) - a(48)
a(35) = - a(47) + a(56) + a(60)
a(34) = 130 - a(46) - a(56) - a(60)
a(33) = - a(36) + a(46) + a(47)
a(32) = 195 + a(44) + 1.5*a(46) - 0.5*a(47) - a(56) + 1.5*a(58) - 0.5*a(59) - a(62) - 3*a(63) - 3*a(64)
a(31) = -130 + a(32) - a(46) + a(48) + a(62) + a(63) + 2 * a(64)
a(30) = 130 - a(31) - a(46) - a(47)
a(29) = - a(32) + a(46) + a(47)
a(28) = - a(30) - a(44) - a(46) + 2 * a(56) - 2 * a(58) + 2 * a(63) + 2 * a(64)
a(27) = - a(32) + a(44) + a(46) + a(58) + a(60) - a(63) - a(64)
a(26) = - a(27) + a(62) + a(63)
a(25) = - a(27) - a(46) - a(48) + a(59) + a(60) + a(63) + a(64)
a(24) = 260 - a(32) - a(44) - a(48) - a(56) - a(60) - 2 * a(64)
a(23) = - a(27) + a(56) + a(60)
a(22) = 130 - a(23) - a(62) - a(63)
a(21) = - a(24) + a(62) + a(63)
a(20) = 130 - a(25) + a(44) - a(46) - a(47) - a(48) - a(56) + a(58) + a(59) + a(60) - a(62) - a(63)
a(19) = - a(21) + a(44) + a(46)
a(18) = a(21) - a(44) + a(47)
a(17) = 130 - a(20) - a(46) - a(47)
a(16) = -130 - a(18) + a(47) + a(56) + a(60) + a(62) + a(63) + a(64)
a(15) = a(19) - a(47) + a(56) + a(60) - a(63)
a(14) = 130 - a(15) - a(62) - a(63)
a(13) = - a(16) + a(62) + a(63)
a(12) = 260 + a(20) - 2 * a(44) - a(48) - a(56) - 2 * a(60) - 2 * a(64)
a(11) = 130 + a(13) - a(59) - a(62) - a(63) - a(64)
a(10) = 130 - a(11) - a(58) - a(59)
a( 9) = - a(17) + a(48) + a(56)
a( 8) = 130 - a(12) - a(56) - a(60)
a( 7) = - a( 8) - a(46) + a(47) - a(58) - a(60) + 2 * a(63) + 2 * a(64)
a( 6) = -260 + a(11) + a(56) + 2 * a(59) + a(60) + a(62) + a(63) + 2 * a(64)
a( 5) = 390 - a(12) - 2 * a(44) - a(46) - a(47) - 2 * a(48) - a(56) - a(60) - 2 * a(64)
a( 4) = 130 + a(6) - a(59) - a(62) - a(63) - a(64)
a( 3) = - a(5) + a(60) + a(62)
a( 2) = - a(3) + a(62) + a(63)
a( 1) = 130 - a(4) - a(62) - a(63)
The linear equations shown above, are ready to be solved, for the Magic Constant 130.
The solutions can be obtained by guessing:
a(44), a(46) ... a(48), a(56), a(58) ... a(60) and a(62) ... a(64)
and filling out these guesses in the abovementioned equations.
For distinct integers also following relations are applicable:
0 < a(i) =< 64 for i = 1, 2, ... 43, 45, 49 ... 55, 57 and 61
Int(a(i)) = a(i) for i = 32
a(i) ≠ a(j) for i ≠ j
which have been incorporated in an optimized guessing routine (MgcCube4a).
Due to the absence of the Plane Symmetrical restrictions this guessing routine appeared to be disappointing slow.
However, the equations deducted above can be applied in a much more efficient method to generate Almost Perfect Magic Cubes,
which will be discussed in Section 3.12.
3.3 Perfect Magic Cubes of order 4 don't exist (Alternative Proof)
If the equations for the 4 Space Diagonals:
a(13) + a(26) + a(39) + a(52) = 130
a(16) + a(27) + a(38) + a(49) = 130
a( 1) + a(22) + a(43) + a(64) = 130
a( 4) + a(23) + a(42) + a(61) = 130
are added to the equations of the 'Almost Perfect Magic Cubes', the following set of linear equations will result:
a(62) = 65 - a(63)
a(61) = 65 - a(64)
a(57) = 130 - a(58) - a(59) - a(60)
a(56) = 65 - a(60)
a(55) = - a(58) + 2 * a(64)
a(54) = 130 - a(59) - 2 * a(64)
a(53) = -65 + a(58) + a(59) + a(60)
a(52) = 65 - a(64)
a(51) = 130 + a(58) - a(59) - a(63) - 2 * a(64)
a(50) = -65 - a(58) + a(59) + a(63) + 2 * a(64)
a(49) = a(64)
a(45) = 130 - a(46) - a(47) - a(48)
a(44) = -1.5 * a(46) + 0.5 * a(47) - a(48) - 1.5 * a(58) + 0.5 * a(59) - a(60) + 2 * a(63) + 3 * a(64)
a(43) = 130 + 0.5 * a(46) - 0.5 * a(47) + 0.5 * a(58) - 0.5 * a(59) - a(63) - 2 * a(64)
a(42) = -65 - 0.5 * a(46) + 0.5 * a(47) - 0.5 * a(58) + 0.5 * a(59) + a(63) + 2 * a(64)
a(41) = 65 + 1.5 * a(46) - 0.5 * a(47) + a(48) + 1.5 * a(58) - 0.5 * a(59) + a(60) - 2 * a(63) - 3 * a(64)
a(40) = - 0.5 * a(46) - 0.5 * a(47) - a(48) + 0.5 * a(58) + 0.5 * a(59) + a(60) + a(64)
a(39) = -65 - 0.5 * a(46) + 0.5 * a(47) - 0.5 * a(58) + 0.5 * a(59) + a(63) + 2 * a(64)
a(38) = 130 + 0.5 * a(46) - 0.5 * a(47) + 0.5 * a(58) - 0.5 * a(59) - a(63) - 2 * a(64)
a(37) = 65 + 0.5 * a(46) + 0.5 * a(47) + a(48) - 0.5 * a(58) - 0.5 * a(59) - a(60) - a(64)
a(36) = 130 + 2 * a(46) + a(48) + a(58) - a(59) - 2 * a(63) - 4 * a(64)
a(35) = 65 - a(47)
a(34) = 65 - a(46)
a(33) = -130 - a(46) + a(47) - a(48) - a(58) + a(59) + 2 * a(63) + 4 * a(64)
a(32) = 65 - a(48)
a(31) = - a(46) + 2 * a(64)
a(30) = 130 - a(47) - 2 * a(64)
a(29) = -65 + a(46) + a(47) + a(48)
a(28) = 0.5 * a(46) + 0.5 * a(47) + a(48) - 0.5 * a(58) - 0.5 * a(59) - a(60) + a(64)
a(27) = -65 - 0.5 * a(46) + 0.5 * a(47) - 0.5 * a(58) + 0.5 * a(59) + a(63) + 2 * a(64)
a(26) = 130 + 0.5 * a(46) - 0.5 * a(47) + 0.5 * a(58) - 0.5 * a(59) - a(63) - 2 * a(64)
a(25) = 65 - 0.5 * a(46) - 0.5 * a(47) - a(48) + 0.5 * a(58) + 0.5 * a(59) + a(60) - a(64)
a(24) = 130 + 1.5 * a(46) - 0.5 * a(47) + a(48) + 1.5 * a(58) - 0.5 * a(59) + a(60) - 2 * a(63) - 5 * a(64)
a(23) = 130 + 0.5 * a(46) - 0.5 * a(47) + 0.5 * a(58) - 0.5 * a(59) - a(63) - 2 * a(64)
a(22) = -65 - 0.5 * a(46) + 0.5 * a(47) - 0.5 * a(58) + 0.5 * a(59) + a(63) + 2 * a(64)
a(21) = -65 - 1.5 * a(46) + 0.5 * a(47) - a(48) - 1.5 * a(58) + 0.5 * a(59) - a(60) + 2 * a(63) + 5 * a(64)
a(20) = -65 - 2 * a(46) - a(48) - a(58) + a(59) + 2 * a(63) + 4 * a(64)
a(19) = 65 + a(46) - 2 * a(64)
a(18) = -65 + a(47) + 2 * a(64)
a(17) = 195 + a(46) - a(47) + a(48) + a(58) - a(59) - 2 * a(63) - 4 * a(64)
a(16) = 65 - a(64)
a(15) = 130 + a(46) - a(47) - a(63) - 2 * a(64)
a(14) = -65 - a(46) + a(47) + a(63) + 2 * a(64)
a(13) = a(64)
a(12) = 130 + a(46) - a(47) + 2 * a(58) + a(60) - 2 * a(63) - 4 * a(64)
a(11) = 65 - a(59)
a(10) = 65 - a(58)
a( 9) = -130 - a(46) + a(47) - a(58) + a(59) - a(60) + 2 * a(63) + 4 * a(64)
a( 8) = -65 - a(46) + a(47) - 2 * a(58) - a(60) + 2 * a(63) + 4 * a(64)
a( 7) = 65 + a(58) - 2 * a(64)
a( 6) = -65 + a(59) + 2 * a(64)
a( 5) = 195 + a(46) - a(47) + a(58) - a(59) + a(60) - 2 * a(63) - 4 * a(64)
a( 4) = a(64)
a( 3) = -130 - a(46) + a(47) - a(58) + a(59) + a(63) + 4 * a(64)
a( 2) = 195 + a(46) - a(47) + a(58) - a(59) - a(63) - 4 * a(64)
a( 1) = 65 - a(64)
The equations above will definitely not return sets of distinct integers as:
a( 1) = a(16) = a(52) = a(61)
a( 4) = a(13) = a(49) = a(64)
a(22) = a(27) = a(39) = a(42)
a(23) = a(26) = a(38) = a(43)
Consequently Perfect Magic Cubes of the 4th order don’t exist.
The same method can be used to proof that 4th order Magic Cubes with Pan Magic Orthogonal Squares don’t exist either.
|