Office Applications and Entertainment, Magic Cubes

Vorige Pagina Volgende Pagina Index About the Author

6.0   Construction Methods (Higher Order)

6.5   Composition by means of Trenkler Cubes


6.5.1 Introduction

Comparable with the Medjig Method as discussed in Section 6.6.1 of 'Magic Squares', it is possible to construct Magic Cubes C of order 2n based on Magic Cubes B of order n.

This method, as published by Professor M. Trenkler (ref. Math. Gaz. 82, March 1998), combines a Magic Cube B of order n with an Auxiliary Cube T composed of n3 order 2 Cubelets, each containing the numbers 0, 1 ... 7.

6.5.2 Simple Magic Cubes of order 6

For Simple Magic Cubes of order 6 the Trenkler Method can be summarised as follows:

  • Construct a Trenkler Cube T composed of 27 order 2 Cubelets, such that all rows, columns, pillars and the four space diagonals sum to 21;
  • Construct a 3 x 3 x 3 Magic Cube B (ref. Attachment 1);
  • Construct the 6 x 6 x 6 Simple Magic Cube C by adding 27 * t(i,j) to b(i) for i = 1 ... 27 and j = 1 ... 8.

A numerical example is shown below:

Magic Cube B Trenkler Cube T Magic Cube C
Plane 1
10 8 24
5 21 16
27 13 2
Plane 1
0 5 5 0 6 5
3 6 3 6 3 0
3 5 5 0 3 5
6 0 3 6 6 0
6 0 0 6 3 6
3 5 5 3 0 5
Plane 2
7 2 2 7 1 2
4 1 4 1 4 7
4 2 2 7 4 2
1 7 4 1 1 7
1 7 7 1 4 1
4 2 2 4 7 2
Plane 1
10 145 143 8 186 159
91 172 89 170 105 24
86 140 156 21 97 151
167 5 102 183 178 16
189 27 13 175 83 164
108 162 148 94 2 137
Plane 2
199 64 62 197 51 78
118 37 116 35 132 213
113 59 75 210 124 70
32 194 129 48 43 205
54 216 202 40 110 29
135 81 67 121 191 56
Plane 2
6 19 17
25 14 3
11 9 22
Plane 3
0 5 5 6 0 5
3 6 0 3 3 6
6 0 3 6 6 0
3 5 5 0 3 5
6 0 3 6 6 0
3 5 5 0 3 5
Plane 4
7 2 2 1 7 2
4 1 7 4 4 1
1 7 4 1 1 7
4 2 2 7 4 2
1 7 4 1 1 7
4 2 2 7 4 2
Plane 3
6 141 154 181 17 152
87 168 19 100 98 179
187 25 95 176 165 3
106 160 149 14 84 138
173 11 90 171 184 22
92 146 144 9 103 157
Plane 4
195 60 73 46 206 71
114 33 208 127 125 44
52 214 122 41 30 192
133 79 68 203 111 57
38 200 117 36 49 211
119 65 63 198 130 76
Plane 3
26 15 1
12 7 23
4 20 18
Plane 5
5 0 5 0 6 5
3 6 3 6 3 0
0 3 3 6 3 6
5 6 5 0 0 5
5 0 5 3 3 5
3 6 0 6 6 0
Plane 6
2 7 2 7 1 2
4 1 4 1 4 7
7 4 4 1 4 1
2 1 2 7 7 2
2 7 2 4 4 2
4 1 7 1 1 7
Plane 5
161 26 150 15 163 136
107 188 96 177 82 1
12 93 88 169 104 185
147 174 142 7 23 158
139 4 155 101 99 153
85 166 20 182 180 18
Plane 6
80 215 69 204 28 55
134 53 123 42 109 190
201 120 115 34 131 50
66 39 61 196 212 77
58 193 74 128 126 72
112 31 209 47 45 207


Notes: The order 2 Cubelets applied above are plane symmetrical.
       An example of this method was previously published by A. Sayles (ref. The Monist 20, 1910 pp 299-303).

An optimized guessing routine (MgcCube6a) counted, based on the properties defined above, the following number of Trenkler Cubes per Unique Center Cubelet:

a(94) a(93) a(88) a(87) j94 j93 j88 n9 n/Plane Total
0 3 5 6 1 2 3 552 28368 15659136
0 3 6 5 1 2 4 208 2880 599040
0 5 3 6 1 3 2 496 28368 14070528
0 5 6 3 1 3 4 2216 1440 3191040
0 6 3 5 1 4 2 192 2880 552960
0 6 5 3 1 4 3 2192 1440 3156480
Total 5856 - 37229184


resulting in a total of 8 * 37229184 = 2,98 108 Trenkler Cubes, of which a few are shown in Attachment 6.5.1.

Attachment 6.5.2 contains the resulting Simple Magic Cubes, based on the order 3 Magic Cube B shown above.

6.5.3 Associated Magic Cubes of order 6

With some minor modifications the Trenkler Method can be used for the construction of Associated Magic Cubes:

  • Construct an Associated Trenkler Cube T composed of 27 order 2 Cubelets, such that:
    - all rows, columns and pillars sum to 21 and
    - the associated pairs sum to 7;
  • Construct a 3 x 3 x 3 Magic Cube B (ref. Attachment 1);
  • Construct the 6 x 6 x 6 Associated Magic Cube C by adding 27 * t(i,j) to b(i) for i = 1 ... 27 and j = 1 ... 8.

A numerical example is shown below:

Magic Cube B Associated Trenkler Cube T Associated Magic Cube C
Plane 1
10 8 24
5 21 16
27 13 2
Plane 1
7 1 1 7 4 1
2 4 4 2 2 7
1 4 1 4 7 4
2 7 7 2 2 1
7 4 1 4 4 1
2 1 7 2 2 7
Plane 2
0 5 5 6 0 5
3 6 0 3 6 3
3 5 5 0 3 5
6 0 3 6 6 0
6 5 5 0 0 5
3 0 3 6 6 3
Plane 1
199 37 35 197 132 51
64 118 116 62 78 213
32 113 48 129 205 124
59 194 210 75 70 43
216 135 40 121 110 29
81 54 202 67 56 191
Plane 2
10 145 143 170 24 159
91 172 8 89 186 105
86 140 156 21 97 151
167 5 102 183 178 16
189 162 148 13 2 137
108 27 94 175 164 83
Plane 2
6 19 17
25 14 3
11 9 22
Plane 3
7 4 4 1 4 1
2 1 7 2 2 7
4 1 4 7 4 1
2 7 1 2 2 7
4 1 1 7 7 1
2 7 4 2 2 4
Plane 4
3 5 5 3 0 5
6 0 0 6 6 3
0 5 5 6 0 5
6 3 0 3 6 3
0 5 5 0 6 5
6 3 6 3 3 0
Plane 3
195 114 127 46 125 44
60 33 208 73 71 206
133 52 122 203 111 30
79 214 41 68 57 192
119 38 36 198 211 49
65 200 117 63 76 130
Plane 4
87 141 154 100 17 152
168 6 19 181 179 98
25 160 149 176 3 138
187 106 14 95 165 84
11 146 144 9 184 157
173 92 171 90 103 22
Plane 3
26 15 1
12 7 23
4 20 18
Plane 5
4 1 1 4 7 4
2 7 7 2 2 1
7 1 1 4 7 1
2 4 7 2 2 4
4 1 4 7 1 4
2 7 1 2 2 7
Plane 6
0 5 5 0 6 5
6 3 3 6 3 0
6 5 5 0 0 5
3 0 3 6 3 6
0 5 5 3 3 5
6 3 0 6 6 0
Plane 5
134 53 42 123 190 109
80 215 204 69 55 28
201 39 34 115 212 50
66 120 196 61 77 131
112 31 128 209 45 126
58 193 47 74 72 207
Plane 6
26 161 150 15 163 136
188 107 96 177 82 1
174 147 142 7 23 158
93 12 88 169 104 185
4 139 155 101 99 153
166 85 20 182 180 18


Attachment 6.5.3 shows the first occurring 48 Associated Trenkler Cubes (ref. MgcCube6b).

Attachment 6.5.4 shows the resulting Associated Magic Cubes, based on the order 3 Magic Cube B shown above.

6.5.4 Associated Magic Cubes of order 6
      Magic Center Planes

The Trenkler Method can also be used for the construction of Associated Magic Cubes with Magic Center Planes:

  • Construct an Associated Trenkler Cube T composed of 27 order 2 Cubelets, such that:
    - all rows, columns, pillars and the main diagonals of the six center planes sum to 21 and
    - the associated pairs sum to 7;
  • Construct a 3 x 3 x 3 Magic Cube B (ref. Attachment 1);
  • Construct the 6 x 6 x 6 Associated Magic Cube C by adding 27 * t(i,j) to b(i) for i = 1 ... 27 and j = 1 ... 8.
    The diagonals of the 6 center planes will sum to the magic sum.

A numerical example is shown below:

Magic Cube B Associated Trenkler Cube T Associated Magic Cube C
Plane 1
10 8 24
5 21 16
27 13 2
Plane 1
6 7 0 1 7 0
3 0 6 3 4 5
7 1 3 7 2 1
2 0 6 4 3 6
3 6 6 4 0 2
0 7 0 2 5 7
Plane 2
1 4 5 4 1 6
5 2 7 2 2 3
5 3 0 2 4 7
4 6 5 1 5 0
5 4 3 5 3 1
1 2 1 7 6 4
Plane 1
172 199 8 35 213 24
91 10 170 89 132 159
194 32 102 210 70 43
59 5 183 129 97 178
108 189 175 121 2 56
27 216 13 67 137 191
Plane 2
37 118 143 116 51 186
145 64 197 62 78 105
140 86 21 75 124 205
113 167 156 48 151 16
162 135 94 148 83 29
54 81 40 202 164 110
Plane 2
6 19 17
25 14 3
11 9 22
Plane 3
7 6 7 0 1 0
0 5 2 6 5 3
0 7 2 6 2 4
6 2 4 0 3 6
3 1 2 6 4 5
5 0 4 3 6 3
Plane 4
4 1 4 3 7 2
2 3 1 5 6 4
1 4 7 3 5 1
3 5 1 5 0 7
4 2 1 5 2 7
7 6 7 0 1 0
Plane 3
195 168 208 19 44 17
6 141 73 181 152 98
25 214 68 176 57 111
187 79 122 14 84 165
92 38 63 171 130 157
146 11 117 90 184 103
Plane 4
114 33 127 100 206 71
60 87 46 154 179 125
52 133 203 95 138 30
106 160 41 149 3 192
119 65 36 144 76 211
200 173 198 9 49 22
Plane 3
26 15 1
12 7 23
4 20 18
Plane 5
3 1 0 6 5 6
6 4 2 4 3 2
7 2 6 2 1 3
0 3 5 7 4 2
4 5 5 0 5 2
1 6 3 2 3 6
Plane 6
0 2 5 7 0 7
5 7 3 1 1 4
1 4 3 1 7 5
6 5 0 4 6 0
2 3 4 1 7 4
7 0 6 7 0 1
Plane 5
107 53 15 177 136 163
188 134 69 123 82 55
201 66 169 61 50 104
12 93 142 196 131 77
112 139 155 20 153 72
31 166 101 74 99 180
Plane 6
26 80 150 204 1 190
161 215 96 42 28 109
39 120 88 34 212 158
174 147 7 115 185 23
58 85 128 47 207 126
193 4 182 209 18 45


Note: The deduction of the applied guessing routine MgcCube6c is described in Exhibit V.

Attachment 6.5.31 shows the first occurring 48 Associated Trenkler Cubes with Magic Center Planes (generated within 40 sec).

Attachment 6.5.41 shows the resulting Associated Magic Cubes, based on the order 3 Magic Cube B shown above.

6.5.5 Associated Magic Cubes of order 6
      Magic Border Planes (s-Magic)

Associated Magic Cubes with Magic Center Planes as deducted in Section 6.5.4 above can be transformed into Associated Magic Cubes with Magic Border Planes (s-Magic).

Attachment 6.5.42 shows the s-Magic Associated Magic Cubes, based on the Associated Magic Cubes shown in Attachment 6.5.41.

6.5.6 Associated Magic Cubes of order 12

Based on the results of Section 6.5.3 above, Associated Magic Cubes of order 12 can be constructed as described below:

  • Construct an Associated Trenkler Cube T composed of 216 order 2 Cubelets, such that all rows, columns and pillars sum to 42 and the associated pairs sum to 7;
  • Select a 6 x 6 x 6 Associated Magic Cube B e.g. from the cubes constructed in Section 6.5.3 (ref. Attachment 6.5.4);
  • Construct the 12 x 12 x 12 Associated Magic Cube C by adding 216 * t(i,j) to b(i) for i = 1 ... 216 and j = 1 ... 8.

A numerical example is shown in Attachment 6.5.5.

Note: The applied Associated Trenkler Cube (MC = 42) is composed out of 8 identical Associated Trenkler Cubes (MC = 21).

6.5.7 Associated Magic Cubes of order 18

Based on the results of Section 6.5.3 above, Associated Magic Cubes of order 18 can be constructed as described below:

  • Construct an Associated Trenkler Cube T composed of 729 order 2 Cubelets, such that all rows, columns and pillars sum to 63 and the associated pairs sum to 7;
  • Select a 9 x 9 x 9 Associated Magic Cube B e.g. from the cubes constructed in Section Section 6.3.2;
  • Construct the 18 x 18 x 18 Associated Magic Cube C by adding 729 * t(i,j) to b(i) for i = 1 ... 216 and j = 1 ... 8.

A numerical example is shown in Attachment 6.5.6.

Note: The applied Associated Trenkler Cube (MC = 63) is composed out of 27 identical Associated Trenkler Cubes (MC = 21).

6.5.8 Summary

The obtained results regarding the miscellaneous types of Magic Cubes as deducted and discussed in previous sections are summarized in following table:

Type

Characteristics

Subroutine

Results

Simple

Trenkler Cubes
Simple Magic Cubes (6 x 6 x 6)

MgcCube6a

Attachment 6.5.1
Attachment 6.5.2

Associated

Associated Trenkler Cubes
Associated Magic Cubes (6 x 6 x 6)

MgcCube6b

Attachment 6.5.3
Attachment 6.5.4

Associated Trenkler Cube
Associated Magic Cube (12 x 12 x 12)

-

Attachment 6.5.5

Associated Trenkler Cube
Associated Magic Cube (18 x 18 x 18)

-

Attachment 6.5.6 1
Attachment 6.5.6 2

Associated
Mgc Cntr Planes
Mgc Brdr Planes

Associated Trenkler Cubes
Associated Magic Cubes (6 x 6 x 6)

MgcCube6c

Attachment 6.5.31
Attachment 6.5.41
Attachment 6.5.42

Next section will provide some examples of the construction of Magic Cubes based on Trenkler Cubes of order 8 and 16.


Vorige Pagina Volgende Pagina Index About the Author