Office Applications and Entertainment, Latin Squares | ||
Index | About the Author |
A Latin Square of order 11 is an 11 x 11 square filled with 11 different symbols, each occurring only once in each row and only once in each column.
11.1 Latin Diagonal Squares (11 x 11)
Latin Diagonal Squares
are Latin Squares for which the 11 different symbols occur also only once in each of the main diagonals.
11.2 Magic Squares, Natural Numbers
Pan Magic Square M of order 11 with the integers 1 ... 121 can be written as
M = A + 11 * B + 1
where the squares A and B contain only the integers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
Attachment 11.2.1 shows the eight types Latin Diagonal Squares based on the construction method described above.
|
A (L2)
0 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 0 1 4 5 6 7 8 9 10 0 1 2 3 6 7 8 9 10 0 1 2 3 4 5 8 9 10 0 1 2 3 4 5 6 7 10 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 0 3 4 5 6 7 8 9 10 0 1 2 5 6 7 8 9 10 0 1 2 3 4 7 8 9 10 0 1 2 3 4 5 6 9 10 0 1 2 3 4 5 6 7 8 B (R2)
0 1 2 3 4 5 6 7 8 9 10 9 10 0 1 2 3 4 5 6 7 8 7 8 9 10 0 1 2 3 4 5 6 5 6 7 8 9 10 0 1 2 3 4 3 4 5 6 7 8 9 10 0 1 2 1 2 3 4 5 6 7 8 9 10 0 10 0 1 2 3 4 5 6 7 8 9 8 9 10 0 1 2 3 4 5 6 7 6 7 8 9 10 0 1 2 3 4 5 4 5 6 7 8 9 10 0 1 2 3 2 3 4 5 6 7 8 9 10 0 1 M = A + 11 * B + 1
1 13 25 37 49 61 73 85 97 109 121 102 114 5 17 29 41 53 65 77 78 90 82 94 106 118 9 21 33 34 46 58 70 62 74 86 98 110 111 2 14 26 38 50 42 54 66 67 79 91 103 115 6 18 30 22 23 35 47 59 71 83 95 107 119 10 112 3 15 27 39 51 63 75 87 99 100 92 104 116 7 19 31 43 55 56 68 80 72 84 96 108 120 11 12 24 36 48 60 52 64 76 88 89 101 113 4 16 28 40 32 44 45 57 69 81 93 105 117 8 20
Each type Latin Diagonal Square described above, corresponds with 10! = 3628800 Latin Diagonal Squares.
An example of the construction of an order 11 Ultra Magic Square M based on pairs of Orthogonal Latin Diagonal Squares (A, B), is shown below for the symbols {ai, i = 1 ... 11} and {bj, j = 1 ... 11}. |
A
a11 a1 a10 a9 a8 a7 a6 a5 a4 a3 a2 a3 a2 a11 a1 a10 a9 a8 a7 a6 a5 a4 a5 a4 a3 a2 a11 a1 a10 a9 a8 a7 a6 a7 a6 a5 a4 a3 a2 a11 a1 a10 a9 a8 a9 a8 a7 a6 a5 a4 a3 a2 a11 a1 a10 a1 a10 a9 a8 a7 a6 a5 a4 a3 a2 a11 a2 a11 a1 a10 a9 a8 a7 a6 a5 a4 a3 a4 a3 a2 a11 a1 a10 a9 a8 a7 a6 a5 a6 a5 a4 a3 a2 a11 a1 a10 a9 a8 a7 a8 a7 a6 a5 a4 a3 a2 a11 a1 a10 a9 a10 a9 a8 a7 a6 a5 a4 a3 a2 a11 a1 B = T(A)
b11 b3 b5 b7 b9 b1 b2 b4 b6 b8 b10 b1 b2 b4 b6 b8 b10 b11 b3 b5 b7 b9 b10 b11 b3 b5 b7 b9 b1 b2 b4 b6 b8 b9 b1 b2 b4 b6 b8 b10 b11 b3 b5 b7 b8 b10 b11 b3 b5 b7 b9 b1 b2 b4 b6 b7 b9 b1 b2 b4 b6 b8 b10 b11 b3 b5 b6 b8 b10 b11 b3 b5 b7 b9 b1 b2 b4 b5 b7 b9 b1 b2 b4 b6 b8 b10 b11 b3 b4 b6 b8 b10 b11 b3 b5 b7 b9 b1 b2 b3 b5 b7 b9 b1 b2 b4 b6 b8 b10 b11 b2 b4 b6 b8 b10 b11 b3 b5 b7 b9 b1
The Latin Square B is the transposed square of A (rows and columns exchanged).
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
10 0 9 8 7 6 5 4 3 2 1 2 1 10 0 9 8 7 6 5 4 3 4 3 2 1 10 0 9 8 7 6 5 6 5 4 3 2 1 10 0 9 8 7 8 7 6 5 4 3 2 1 10 0 9 0 9 8 7 6 5 4 3 2 1 10 1 10 0 9 8 7 6 5 4 3 2 3 2 1 10 0 9 8 7 6 5 4 5 4 3 2 1 10 0 9 8 7 6 7 6 5 4 3 2 1 10 0 9 8 9 8 7 6 5 4 3 2 1 10 0 B = T(A)
10 2 4 6 8 0 1 3 5 7 9 0 1 3 5 7 9 10 2 4 6 8 9 10 2 4 6 8 0 1 3 5 7 8 0 1 3 5 7 9 10 2 4 6 7 9 10 2 4 6 8 0 1 3 5 6 8 0 1 3 5 7 9 10 2 4 5 7 9 10 2 4 6 8 0 1 3 4 6 8 0 1 3 5 7 9 10 2 3 5 7 9 10 2 4 6 8 0 1 2 4 6 8 0 1 3 5 7 9 10 1 3 5 7 9 10 2 4 6 8 0 M = A + 11 * B + 1
121 23 54 75 96 7 17 38 59 80 101 3 13 44 56 87 108 118 29 50 71 92 104 114 25 46 77 89 10 20 41 62 83 95 6 16 37 58 79 110 111 32 53 74 86 107 117 28 49 70 91 2 22 34 65 67 98 9 19 40 61 82 103 113 24 55 57 88 100 120 31 52 73 94 5 15 36 48 69 90 11 12 43 64 85 106 116 27 39 60 81 102 112 33 45 76 97 8 18 30 51 72 93 4 14 35 66 78 109 119 21 42 63 84 105 115 26 47 68 99 1
The Latin Diagonal Squares A can be determined based on the defining equations of the top and bottom row, as provided below for Latin Diagonal Squares type R2:
|
a(120) = 2 * s1 / 11 - a(121) |
a(7) = 3 * s1 / 11 - a(120) - a(121) |
a(11) = a(119) |
The solutions can be obtained by guessing the 5 parameters:
11.2.3 Concentric Magic Squares
Order 11 Concentric Magic Squares M can be constructed based on pairs of Orthogonal Concentric Semi-Latin Squares (A, B), as shown below for the symbols {ai, i = 1 ... 11} and {bj, j = 1 ... 11). |
A
a6 a2 a3 a4 a5 a7 a8 a9 a10 a11 a1 a1 a10 a3 a4 a2 a5 a7 a8 a9 a6 a11 a11 a2 a9 a3 a4 a5 a7 a8 a6 a10 a1 a11 a2 a9 a8 a4 a5 a7 a6 a3 a10 a1 a1 a10 a3 a4 a7 a5 a6 a8 a9 a2 a11 a1 a10 a3 a8 a5 a6 a7 a4 a9 a2 a11 a1 a10 a9 a4 a6 a7 a5 a8 a3 a2 a11 a1 a2 a3 a6 a8 a7 a5 a4 a9 a10 a11 a11 a2 a6 a9 a8 a7 a5 a4 a3 a10 a1 a11 a6 a9 a8 a10 a7 a5 a4 a3 a2 a1 a11 a10 a9 a8 a7 a5 a4 a3 a2 a1 a6 B
b1 b1 b1 b11 b11 b11 b11 b1 b1 b11 b6 b11 b6 b10 b10 b2 b2 b2 b10 b10 b2 b1 b10 b9 b6 b9 b3 b9 b9 b3 b3 b3 b2 b9 b8 b8 b6 b4 b8 b8 b4 b4 b4 b3 b8 b7 b7 b5 b6 b5 b7 b7 b5 b5 b4 b7 b5 b5 b4 b7 b6 b5 b8 b7 b7 b5 b5 b2 b4 b7 b5 b7 b6 b5 b8 b10 b7 b4 b4 b3 b8 b8 b4 b4 b6 b9 b8 b8 b3 b3 b9 b3 b9 b3 b3 b9 b6 b9 b9 b2 b10 b2 b2 b10 b10 b10 b2 b2 b6 b10 b6 b11 b11 b1 b1 b1 b1 b11 b11 b1 b11
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
5 1 2 3 4 6 7 8 9 10 0 0 9 2 3 1 4 6 7 8 5 10 10 1 8 2 3 4 6 7 5 9 0 10 1 8 7 3 4 6 5 2 9 0 0 9 2 3 6 4 5 7 8 1 10 0 9 2 7 4 5 6 3 8 1 10 0 9 8 3 5 6 4 7 2 1 10 0 1 2 5 7 6 4 3 8 9 10 10 1 5 8 7 6 4 3 2 9 0 10 5 8 7 9 6 4 3 2 1 0 10 9 8 7 6 4 3 2 1 0 5 B
0 0 0 10 10 10 10 0 0 10 5 10 5 9 9 1 1 1 9 9 1 0 9 8 5 8 2 8 8 2 2 2 1 8 7 7 5 3 7 7 3 3 3 2 7 6 6 4 5 4 6 6 4 4 3 6 4 4 3 6 5 4 7 6 6 4 4 1 3 6 4 6 5 4 7 9 6 3 3 2 7 7 3 3 5 8 7 7 2 2 8 2 8 2 2 8 5 8 8 1 9 1 1 9 9 9 1 1 5 9 5 10 10 0 0 0 0 10 10 0 10 M = A + 11 * B + 1
6 2 3 114 115 117 118 9 10 121 56 111 65 102 103 13 16 18 107 108 17 11 110 90 64 91 26 93 95 30 28 32 12 99 79 86 63 37 82 84 39 36 43 23 78 76 69 48 62 49 72 74 53 46 44 67 54 47 41 71 61 51 81 75 68 55 45 21 42 70 50 73 60 52 80 101 77 34 35 25 83 85 40 38 59 97 87 88 33 24 94 31 96 29 27 92 58 98 89 22 105 20 19 109 106 104 15 14 57 100 66 120 119 8 7 5 4 113 112 1 116
A pair of order 11 Orthogonal Semi-Latin Borders can be constructed
for each pair of order 9 Orthogonal Concentric Semi-Latin Squares
(A9, B9),
as found in Section 9.2.2.
Pan Magic Sub Squares Order 4 and 5
Order 11 Bordered Magic Squares M can be constructed based on pairs of Orthogonal Bordered
Semi-Latin Squares
(A, B)
for miscellaneous types of Center Squares.
|
A
a6 a2 a3 a4 a5 a7 a8 a9 a10 a11 a1 a1 a5 a2 a10 a7 a9 a8 a3 a6 a4 a11 a11 a7 a10 a2 a5 a3 a6 a4 a9 a8 a1 a11 a2 a5 a7 a10 a4 a9 a8 a3 a6 a1 a1 a10 a7 a5 a2 a8 a3 a6 a4 a9 a11 a1 a5 a2 a10 a7 a6 a4 a9 a8 a3 a11 a1 a7 a6 a5 a2 a10 a4 a3 a9 a8 a11 a1 a2 a10 a7 a6 a5 a8 a9 a3 a4 a11 a11 a6 a5 a2 a10 a7 a3 a4 a8 a9 a1 a11 a10 a7 a6 a5 a2 a9 a8 a4 a3 a1 a11 a10 a9 a8 a7 a5 a4 a3 a2 a1 a6 B
b1 b1 b1 b11 b11 b11 b11 b1 b1 b11 b6 b11 b5 b7 b2 b10 b7 b2 b6 b10 b5 b1 b10 b2 b10 b5 b7 b10 b5 b7 b2 b6 b2 b9 b10 b2 b7 b5 b2 b6 b10 b5 b7 b3 b8 b7 b5 b10 b2 b5 b7 b2 b6 b10 b4 b7 b9 b3 b4 b8 b6 b10 b5 b7 b2 b5 b5 b4 b8 b6 b9 b3 b4 b8 b3 b9 b7 b4 b6 b9 b3 b4 b8 b3 b9 b4 b8 b8 b3 b3 b4 b8 b6 b9 b9 b3 b8 b4 b9 b2 b8 b6 b9 b3 b4 b8 b4 b9 b3 b10 b6 b11 b11 b1 b1 b1 b1 b11 b11 b1 b11
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example.
A
5 1 2 3 4 6 7 8 9 10 0 0 4 1 9 6 8 7 2 5 3 10 10 6 9 1 4 2 5 3 8 7 0 10 1 4 6 9 3 8 7 2 5 0 0 9 6 4 1 7 2 5 3 8 10 0 4 1 9 6 5 3 8 7 2 10 0 6 5 4 1 9 3 2 8 7 10 0 1 9 6 5 4 7 8 2 3 10 10 5 4 1 9 6 2 3 7 8 0 10 9 6 5 4 1 8 7 3 2 0 10 9 8 7 6 4 3 2 1 0 5 B
0 0 0 10 10 10 10 0 0 10 5 10 4 6 1 9 6 1 5 9 4 0 9 1 9 4 6 9 4 6 1 5 1 8 9 1 6 4 1 5 9 4 6 2 7 6 4 9 1 4 6 1 5 9 3 6 8 2 3 7 5 9 4 6 1 4 4 3 7 5 8 2 3 7 2 8 6 3 5 8 2 3 7 2 8 3 7 7 2 2 3 7 5 8 8 2 7 3 8 1 7 5 8 2 3 7 3 8 2 9 5 10 10 0 0 0 0 10 10 0 10 M = A + 11 * B + 1
6 2 3 114 115 117 118 9 10 121 56 111 49 68 21 106 75 19 58 105 48 11 110 18 109 46 71 102 50 70 20 63 12 99 101 16 73 54 15 64 107 47 72 23 78 76 51 104 13 52 69 17 59 108 44 67 93 24 43 84 61 103 53 74 14 55 45 40 83 60 90 32 37 80 31 96 77 34 57 98 29 39 82 30 97 36 81 88 33 28 38 79 65 95 91 26 85 42 89 22 87 62 94 27 35 86 41 92 25 100 66 120 119 8 7 5 4 113 112 1 116
A pair of order 11 Orthogonal Semi-Latin Borders can be combined with any pair of order 9 Orthogonal
Diagonal-Latin or Semi-Latin Squares
(A9, B9),
of which a few types have been discussed in Section 9.2.
Each pair of order 11 Orthogonal Semi-Latin Borders corresponds with 8 * (9!)2 = 1.053.455.155.200 pairs.
The example shown below is based on Center Squares with order 4 and 5 Diamond Inlays as discussed in Section 9.2.8 and the symbols {ai, i = 1 ... 11} and {bj, j = 1 ... 11).
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A pair of order 11 Orthogonal Semi-Latin Borders can be constructed
for each pair of order 9 Orthogonal Inlaid Semi-Latin Squares
(A9, B9),
as found in Section 9.2.8.
11.2.5 Associated Magic Squares
Order 11 Associated Magic Squares M, with order 4 and 5 Magic Square Inlays -
as discussed in Section 11.3.3 -
can be constructed based on pairs of Orthogonal Inlaid Semi-Latin Squares
(A, B).
|
A
a8 a4 a8 a4 a8 a4 a8 a4 a8 a4 a6 a10 a7 a10 a6 a1 a3 a1 a3 a7 a10 a8 a11 a6 a1 a3 a7 a10 a10 a7 a3 a1 a7 a9 a3 a7 a10 a6 a1 a3 a1 a10 a7 a9 a7 a10 a6 a1 a3 a7 a7 a10 a1 a3 a11 a2 a1 a3 a7 a10 a6 a2 a5 a9 a11 a10 a1 a9 a11 a2 a5 a5 a9 a11 a6 a2 a5 a3 a5 a2 a11 a9 a11 a6 a2 a5 a9 a3 a5 a11 a9 a5 a2 a2 a5 a9 a11 a6 a1 a4 a2 a5 a9 a11 a9 a11 a6 a2 a5 a2 a6 a8 a4 a8 a4 a8 a4 a8 a4 a8 a4 B
b6 b8 b7 b9 b11 b10 b5 b3 b1 b2 b4 b4 b7 b6 b3 b10 b1 b9 b5 b11 b2 b8 b8 b10 b1 b7 b6 b3 b11 b2 b9 b5 b4 b4 b6 b3 b10 b1 b7 b2 b11 b5 b9 b8 b8 b1 b7 b6 b3 b10 b5 b9 b2 b11 b4 b4 b3 b10 b1 b7 b6 b5 b11 b2 b9 b8 b8 b1 b10 b3 b7 b2 b9 b6 b5 b11 b4 b4 b3 b7 b1 b10 b5 b11 b2 b9 b6 b8 b8 b7 b3 b10 b1 b9 b6 b5 b11 b2 b4 b4 b10 b1 b7 b3 b11 b2 b9 b6 b5 b8 b8 b10 b11 b9 b7 b2 b1 b3 b5 b4 b6
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
7 3 7 3 7 3 7 3 7 3 5 9 6 9 5 0 2 0 2 6 9 7 10 5 0 2 6 9 9 6 2 0 6 8 2 6 9 5 0 2 0 9 6 8 6 9 5 0 2 6 6 9 0 2 10 1 0 2 6 9 5 1 4 8 10 9 0 8 10 1 4 4 8 10 5 1 4 2 4 1 10 8 10 5 1 4 8 2 4 10 8 4 1 1 4 8 10 5 0 3 1 4 8 10 8 10 5 1 4 1 5 7 3 7 3 7 3 7 3 7 3 Sa
22 17 23 28 B
5 7 6 8 10 9 4 2 0 1 3 3 6 5 2 9 0 8 4 10 1 7 7 9 0 6 5 2 10 1 8 4 3 3 5 2 9 0 6 1 10 4 8 7 7 0 6 5 2 9 4 8 1 10 3 3 2 9 0 6 5 4 10 1 8 7 7 0 9 2 6 1 8 5 4 10 3 3 2 6 0 9 4 10 1 8 5 7 7 6 2 9 0 8 5 4 10 1 3 3 9 0 6 2 10 1 8 5 4 7 7 9 10 8 6 1 0 2 4 3 5 Sb
22 23 17 28 M = A + 11 * B + 1
63 81 74 92 118 103 52 26 8 15 39 43 73 65 28 100 3 89 47 117 21 85 88 105 1 69 62 32 120 18 91 45 40 42 58 29 109 6 67 14 111 54 95 86 84 10 72 56 25 106 51 98 12 113 44 35 23 102 7 76 61 46 115 20 99 87 78 9 110 24 71 16 97 66 50 112 38 36 27 68 11 108 55 116 13 93 64 80 82 77 31 104 2 90 60 53 121 17 34 37 101 5 75 33 119 22 94 57 49 79 83 107 114 96 70 19 4 30 48 41 59 Sm
269 274 214 341
The balanced series {0, 1, 2, 3, 4 ... 10} have been split into two unbalanced sub series:
Attachment 11.25.1 shows a few suitable sets (12 ea) of order 4/5 sub series for the integers 0 ... 10.
11.2.6 Associated Magic Squares
Diamond Inlays order 5 and 6
Order 11 Associated Magic Squares M, with order 5 and 6 Diamond Inlays, can be constructed based on pairs of Orthogonal Semi-Latin Squares (A, B), as shown below for the symbols {ai, i = 1 ... 11} and {bj, j = 1 ... 11). |
A
a9 a11 a5 a4 a8 a2 a6 a1 a3 a7 a10 a5 a2 a1 a8 a4 a11 a9 a3 a6 a7 a10 a6 a2 a11 a1 a5 a9 a10 a8 a3 a4 a7 a7 a11 a8 a4 a9 a2 a3 a1 a5 a10 a6 a3 a10 a1 a6 a7 a9 a4 a8 a5 a11 a2 a11 a9 a2 a4 a5 a6 a7 a8 a10 a3 a1 a10 a1 a7 a4 a8 a3 a5 a6 a11 a2 a9 a6 a2 a7 a11 a9 a10 a3 a8 a4 a1 a5 a5 a8 a9 a4 a2 a3 a7 a11 a1 a10 a6 a2 a5 a6 a9 a3 a1 a8 a4 a11 a10 a7 a2 a5 a9 a11 a6 a10 a4 a8 a7 a1 a3 B = T(A)
b9 b5 b6 b7 b3 b11 b10 b6 b5 b2 b2 b11 b2 b2 b11 b10 b9 b1 b2 b8 b5 b5 b5 b1 b11 b8 b1 b2 b7 b7 b9 b6 b9 b4 b8 b1 b4 b6 b4 b4 b11 b4 b9 b11 b8 b4 b5 b9 b7 b5 b8 b9 b2 b3 b6 b2 b11 b9 b2 b9 b6 b3 b10 b3 b1 b10 b6 b9 b10 b3 b4 b7 b5 b3 b7 b8 b4 b1 b3 b8 b1 b8 b8 b6 b8 b11 b4 b8 b3 b6 b3 b5 b5 b10 b11 b4 b1 b11 b7 b7 b7 b4 b10 b11 b3 b2 b1 b10 b10 b1 b10 b10 b7 b6 b2 b1 b9 b5 b6 b7 b3
The Latin Square B is the transposed square of A (rows and columns exchanged).
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
8 10 4 3 7 1 5 0 2 6 9 4 1 0 7 3 10 8 2 5 6 9 5 1 10 0 4 8 9 7 2 3 6 6 10 7 3 8 1 2 0 4 9 5 2 9 0 5 6 8 3 7 4 10 1 10 8 1 3 4 5 6 7 9 2 0 9 0 6 3 7 2 4 5 10 1 8 5 1 6 10 8 9 2 7 3 0 4 4 7 8 3 1 2 6 10 0 9 5 1 4 5 8 2 0 7 3 10 9 6 1 4 8 10 5 9 3 7 6 0 2 B = T(A)
8 4 5 6 2 10 9 5 4 1 1 10 1 1 10 9 8 0 1 7 4 4 4 0 10 7 0 1 6 6 8 5 8 3 7 0 3 5 3 3 10 3 8 10 7 3 4 8 6 4 7 8 1 2 5 1 10 8 1 8 5 2 9 2 0 9 5 8 9 2 3 6 4 2 6 7 3 0 2 7 0 7 7 5 7 10 3 7 2 5 2 4 4 9 10 3 0 10 6 6 6 3 9 10 2 1 0 9 9 0 9 9 6 5 1 0 8 4 5 6 2 M = 11 * A + B + 1
97 115 50 40 80 22 65 6 27 68 101 55 13 2 88 43 119 89 24 63 71 104 60 12 121 8 45 90 106 84 31 39 75 70 118 78 37 94 15 26 11 48 108 66 30 103 5 64 73 93 41 86 46 113 17 112 99 20 35 53 61 69 87 102 23 10 105 9 76 36 81 29 49 58 117 19 92 56 14 74 111 96 107 28 85 44 4 52 47 83 91 38 16 32 77 114 1 110 62 18 51 59 98 33 3 79 34 120 109 67 21 54 95 116 57 100 42 82 72 7 25
With procedure SemiLat11
numerous pairs of Orthogonal Semi-Latin Associated Squares
(A, T(A))
with order 5 and 6 Diamond Inlays can be found,
of which a few are shown in Attachment 11.2.6.
11.3 Magic Squares, Prime Numbers
When the elements {ai, i = 1 ... 11} and {bj, j = 1 ... 11) of a valid pair of Orthogonal Diagonal Latin Squares (A, B) - as applied in Section 11.2.1 above - comply with following condition:
the resulting square M = A + B will be an order 11 Prime Number Pan Magic Square. Sa = 20407
Attachment 11.3 contains miscellaneous correlated series
{ai, i = 1 ... 11}
and
{bj, j = 1 ... 11).
Attachment 11.3.1 contains the resulting Prime Number Pan Magic Squares for miscellaneous Magic Sums (Sm).
11.3.2 Symmetric Magic Squares
Order 11 Correlated Balanced Magic Series, suitable for Prime Number Symmetric Magic Squares, have not yet been found.
The obtained results regarding the order 11 (Semi) Latin - and related Magic Squares, as deducted and discussed in previous sections, are summarized in following table:
Comparable methods as described above, can be used to construct order 12 (Semi) Latin - and related (Pan) Magic Squares,
which will be described in following sections.
|
Index | About the Author |