Office Applications and Entertainment, Latin Squares | ||
Index | About the Author |
A
a10 a8 a3 a1 a7 a4 a2 a9 a5 a6 a8 a2 a6 a9 a10 a3 a5 a7 a1 a4 a1 a10 a8 a2 a9 a7 a6 a5 a4 a3 a3 a9 a1 a4 a5 a8 a10 a6 a7 a2 a5 a7 a10 a8 a6 a2 a1 a4 a3 a9 a4 a3 a7 a6 a8 a5 a9 a1 a2 a10 a9 a1 a2 a3 a4 a6 a7 a8 a10 a5 a2 a6 a9 a5 a1 a10 a4 a3 a8 a7 a6 a4 a5 a7 a2 a1 a3 a10 a9 a8 a7 a5 a4 a10 a3 a9 a8 a2 a6 a1 B
b10 b6 b5 b8 b1 b3 b4 b2 b7 b9 b7 b2 b4 b3 b9 b10 b1 b8 b5 b6 b6 b5 b8 b1 b10 b9 b3 b4 b2 b7 b9 b7 b2 b4 b3 b1 b8 b5 b6 b10 b2 b4 b3 b9 b6 b7 b10 b1 b8 b5 b8 b1 b10 b7 b2 b5 b6 b9 b3 b4 b4 b3 b9 b6 b5 b2 b7 b10 b1 b8 b5 b8 b1 b10 b7 b6 b9 b3 b4 b2 b1 b10 b6 b5 b8 b4 b2 b7 b9 b3 b3 b9 b7 b2 b4 b8 b5 b6 b10 b1
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
9 7 2 0 6 3 1 8 4 5 7 1 5 8 9 2 4 6 0 3 0 9 7 1 8 6 5 4 3 2 2 8 0 3 4 7 9 5 6 1 4 6 9 7 5 1 0 3 2 8 3 2 6 5 7 4 8 0 1 9 8 0 1 2 3 5 6 7 9 4 1 5 8 4 0 9 3 2 7 6 5 3 4 6 1 0 2 9 8 7 6 4 3 9 2 8 7 1 5 0 B
9 5 4 7 0 2 3 1 6 8 6 1 3 2 8 9 0 7 4 5 5 4 7 0 9 8 2 3 1 6 8 6 1 3 2 0 7 4 5 9 1 3 2 8 5 6 9 0 7 4 7 0 9 6 1 4 5 8 2 3 3 2 8 5 4 1 6 9 0 7 4 7 0 9 6 5 8 2 3 1 0 9 5 4 7 3 1 6 8 2 2 8 6 1 3 7 4 5 9 0 M = A + 10 * B + 1
100 58 43 71 7 24 32 19 65 86 68 12 36 29 90 93 5 77 41 54 51 50 78 2 99 87 26 35 14 63 83 69 11 34 25 8 80 46 57 92 15 37 30 88 56 62 91 4 73 49 74 3 97 66 18 45 59 81 22 40 39 21 82 53 44 16 67 98 10 75 42 76 9 95 61 60 84 23 38 17 6 94 55 47 72 31 13 70 89 28 27 85 64 20 33 79 48 52 96 1
Each orthogonal set (A, B) corresponds with 1920 transformations, as described below.
The resulting number of transformations, excluding the 180o rotated aspects, is 32/2 * 120 = 1920.
Symmetrical Diagonals
An example of the construction of an order 10 Simple Magic Square M - with Symmetrical Diagonals - based on pairs of Orthogonal Semi-Latin Squares (A, B), is shown below for the symbols {ai, i = 1 ... 10} and {bj, j = 1 ... 10}. |
A
a1 a1 a1 a1 a10 a10 a10 a10 a10 a1 a2 a2 a2 a9 a9 a9 a9 a9 a2 a2 a3 a8 a3 a3 a8 a8 a8 a3 a8 a3 a4 a4 a7 a4 a7 a7 a4 a7 a7 a4 a5 a5 a5 a6 a5 a5 a6 a6 a6 a6 a6 a6 a6 a5 a6 a6 a5 a5 a5 a5 a7 a7 a4 a7 a4 a4 a7 a4 a4 a7 a8 a3 a8 a8 a3 a3 a3 a8 a3 a8 a9 a9 a9 a2 a2 a2 a2 a2 a9 a9 a10 a10 a10 a10 a1 a1 a1 a1 a1 a10 B = T(A)
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b1 b2 b8 b4 b5 b6 b7 b3 b9 b10 b1 b2 b3 b7 b5 b6 b4 b8 b9 b10 b1 b9 b3 b4 b6 b5 b7 b8 b2 b10 b10 b9 b8 b7 b5 b6 b4 b3 b2 b1 b10 b9 b8 b7 b5 b6 b4 b3 b2 b1 b10 b9 b8 b4 b6 b5 b7 b3 b2 b1 b10 b9 b3 b7 b6 b5 b4 b8 b2 b1 b10 b2 b8 b7 b6 b5 b4 b3 b9 b1 b1 b2 b3 b4 b6 b5 b7 b8 b9 b10
The Semi-Latin Square A has Semi-Latin Rows, Latin Columns and Latin Diagonals (Symmetrical).
The Semi-Latin Square B is the transposed square of A (rows and columns exchanged).
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
0 0 0 0 9 9 9 9 9 0 1 1 1 8 8 8 8 8 1 1 2 7 2 2 7 7 7 2 7 2 3 3 6 3 6 6 3 6 6 3 4 4 4 5 4 4 5 5 5 5 5 5 5 4 5 5 4 4 4 4 6 6 3 6 3 3 6 3 3 6 7 2 7 7 2 2 2 7 2 7 8 8 8 1 1 1 1 1 8 8 9 9 9 9 0 0 0 0 0 9 B = T(A)
0 1 2 3 4 5 6 7 8 9 0 1 7 3 4 5 6 2 8 9 0 1 2 6 4 5 3 7 8 9 0 8 2 3 5 4 6 7 1 9 9 8 7 6 4 5 3 2 1 0 9 8 7 6 4 5 3 2 1 0 9 8 7 3 5 4 6 2 1 0 9 8 2 6 5 4 3 7 1 0 9 1 7 6 5 4 3 2 8 0 0 1 2 3 5 4 6 7 8 9 M = A + 10 * B + 1
1 11 21 31 50 60 70 80 90 91 2 12 72 39 49 59 69 29 82 92 3 18 23 63 48 58 38 73 88 93 4 84 27 34 57 47 64 77 17 94 95 85 75 66 45 55 36 26 16 6 96 86 76 65 46 56 35 25 15 5 97 87 74 37 54 44 67 24 14 7 98 83 28 68 53 43 33 78 13 8 99 19 79 62 52 42 32 22 89 9 10 20 30 40 51 41 61 71 81 100
The amount of Semi-Latin Squares with Symmetrical Diagonals is so substantial, that the example shown above is based on following (restricting) properties:
The number of Orthogonal Sets (A, B) which can be generated under these conditions,
with both diagonals, the top and bottom row constant,
is 117504 (ref. SemiLat10).
Composed Border
With the 'Check Border' routine activated it is possible to filter Orthogonal Semi-Latin Squares (A, B) with Composed Borders from the collection described above, as illustrated by following numerical example (ref. SemiLat10): |
A
0 0 0 0 9 9 9 9 9 0 1 1 1 8 8 8 8 8 1 1 2 7 2 2 7 7 7 2 7 2 3 6 6 3 3 6 3 6 6 3 4 4 4 5 4 4 5 5 5 5 5 5 5 4 5 5 4 4 4 4 6 3 3 6 6 3 6 3 3 6 7 2 7 7 2 2 2 7 2 7 8 8 8 1 1 1 1 1 8 8 9 9 9 9 0 0 0 0 0 9 B = T(A)
0 1 2 3 4 5 6 7 8 9 0 1 7 6 4 5 3 2 8 9 0 1 2 6 4 5 3 7 8 9 0 8 2 3 5 4 6 7 1 9 9 8 7 3 4 5 6 2 1 0 9 8 7 6 4 5 3 2 1 0 9 8 7 3 5 4 6 2 1 0 9 8 2 6 5 4 3 7 1 0 9 1 7 6 5 4 3 2 8 0 0 1 2 3 5 4 6 7 8 9 C = A + 10 * B + 1
1 11 21 31 50 60 70 80 90 91 2 12 72 69 49 59 39 29 82 92 3 18 23 63 48 58 38 73 88 93 4 87 27 34 54 47 64 77 17 94 95 85 75 36 45 55 66 26 16 6 96 86 76 65 46 56 35 25 15 5 97 84 74 37 57 44 67 24 14 7 98 83 28 68 53 43 33 78 13 8 99 19 79 62 52 42 32 22 89 9 10 20 30 40 51 41 61 71 81 100
The number of Orthogonal Sets (A, B),
which can be filtered from the collection with both diagonals, the top and bottom row constant,
is 6400 out of 117504.
10.2.4 Almost Associated Magic Squares
Order 10 Almost Associated Magic Squares as discussed in Section 10.3.2, but composed out of
can be constructed based on Orthogonal Semi-Latin Squares (A, B) as illustrted by following numerical example: |
A
9 7 9 1 0 0 9 1 8 1 0 8 0 9 8 8 1 8 0 3 1 6 7 2 7 4 2 5 6 5 2 5 3 6 3 3 6 6 9 2 5 2 2 5 4 7 5 4 5 6 3 4 5 4 2 5 4 7 7 4 7 0 6 3 6 6 3 3 4 7 4 3 4 7 5 2 7 2 3 8 6 9 1 8 1 1 0 9 1 9 8 1 8 0 9 9 8 0 2 0 B
9 0 1 2 5 3 7 4 6 8 7 8 6 5 2 4 0 3 9 1 9 0 7 3 5 2 6 4 1 8 1 9 4 6 2 7 3 5 8 0 0 8 5 3 4 2 6 7 1 9 0 8 2 3 7 5 6 4 1 9 9 1 4 6 2 7 3 5 0 8 1 8 5 6 7 4 3 2 9 0 8 0 6 9 5 7 4 3 1 2 1 3 5 2 6 4 7 8 9 0 C = A + 10 * B + 1
100 8 20 22 51 31 80 42 69 82 71 89 61 60 29 49 2 39 91 14 92 7 78 33 58 25 63 46 17 86 13 96 44 67 24 74 37 57 90 3 6 83 53 36 45 28 66 75 16 97 4 85 26 35 73 56 65 48 18 95 98 11 47 64 27 77 34 54 5 88 15 84 55 68 76 43 38 23 94 9 87 10 62 99 52 72 41 40 12 30 19 32 59 21 70 50 79 81 93 1
The defining equations for the (Semi-Latin) Associated Borders can be written as: a(91) = s1 - a(92) - a(93) - a(94) - a(95) - a(96) - a(97) - a(98) - a(99) - a(100) a(85) = a(86) - a(95) + a(96) a(84) = a(87) - a(94) + a(97) a(83) = a(88) - a(93) + a(98) a(81) = s1 - a(82) - a(83) - a(84) - a(85) - a(86) - a(87) - a(88) - a(89) - a(90) a(71) = 2*s1/5 - a(72) - a(79) - a(80) a(61) = 2*s1/5 - a(62) - a(69) - a(70) a(59) = 8*s1/5 - a(60) - a(69) - a(70) - a(79) - a(80) - a(86) - a(87) - a(88) - a(89) + - a(90) - a(96) - a(97) - a(98) - a(99) - a(100) a(52) = a(59) - a(62) + a(69) - a(72) + a(79) - a(82) + a(89) - a(92) + a(99) a(51) = 2*s1/5 - a(52) - a(59) - a(60) a(i) = s1/5 - a(101 - i) for i = 1 ... 22, 29 ... 32, 39 ... 42, 49, 50
The solutions can be obtained by guessing the 22 parameters:
Attachment 10.24.1 shows 256 ea order 10 Semi-Latin Associated Borders - with Latin Columns and suitable for Latin Diagonals -
based on the equations deducted above (ref. AssBrdr10).
The order 8 Orthogonal Latin Diagonal or Semi-Latin Squares
(A8, B8),
as discussed in Section 8.2, have been used to construct collections of Simple Magic Squares
based on the Balanced Series {0 ... 7}.
Suitable Borders can be constructed for each of these Center Squares,
based on pairs of Non Latin but Orthogonal Borders
(A, B).
A numerical example of the construction of a Bordered Magic Square with a Pan Magic Square composed of order 4 Pan Magic Sub Squares as Center Square is shown below: |
A
0 6 5 4 9 0 9 2 1 9 3 4 1 8 5 3 2 7 6 6 9 6 7 2 3 5 8 1 4 0 9 1 4 5 8 2 3 6 7 0 0 7 6 3 2 8 5 4 1 9 9 4 1 8 5 3 2 7 6 0 0 6 7 2 3 5 8 1 4 9 8 1 4 5 8 2 3 6 7 1 7 7 6 3 2 8 5 4 1 2 0 3 4 5 0 9 0 7 8 9 B
0 9 9 9 8 8 2 0 0 0 9 4 6 1 7 4 6 1 7 0 7 1 7 4 6 1 7 4 6 2 6 8 2 5 3 8 2 5 3 3 6 5 3 8 2 5 3 8 2 3 4 3 5 2 8 3 5 2 8 5 4 2 8 3 5 2 8 3 5 5 0 7 1 6 4 7 1 6 4 9 0 6 4 7 1 6 4 7 1 9 9 0 0 0 1 1 7 9 9 9 M = A + 10 * B + 1
1 97 96 95 90 81 30 3 2 10 94 45 62 19 76 44 63 18 77 7 80 17 78 43 64 16 79 42 65 21 70 82 25 56 39 83 24 57 38 31 61 58 37 84 23 59 36 85 22 40 50 35 52 29 86 34 53 28 87 51 41 27 88 33 54 26 89 32 55 60 9 72 15 66 49 73 14 67 48 92 8 68 47 74 13 69 46 75 12 93 91 4 5 6 11 20 71 98 99 100
Each pair of order 10 Orthogonal Non-Latin Borders corresponds with 8 * (8!)2 = 13.005.619.200 pairs.
Magic Center Cross (2 x 10)
Pairs of Non-Latin but Orthogonal Borders
(A', B'),
can be transformed to
pairs of Non-Latin but Orthogonal Center Crosses
(A, B),
which can be completed with
pairs of order 4 Orthogonal
Latin-Diagonal Squares (A4, B4).
|
A
8 4 5 1 3 6 3 2 7 6 1 5 4 8 9 0 6 7 2 3 4 8 1 5 9 0 2 3 6 7 5 1 8 4 0 9 7 6 3 2 6 5 4 9 0 9 0 9 2 1 3 4 5 0 0 9 9 0 7 8 8 4 5 1 9 0 3 2 7 6 1 5 4 8 0 9 6 7 2 3 4 8 1 5 8 1 2 3 6 7 5 1 8 4 7 2 7 6 3 2 B
8 1 4 5 9 0 8 1 4 5 4 5 8 1 7 2 4 5 8 1 5 4 1 8 6 3 5 4 1 8 1 8 5 4 6 3 1 8 5 4 9 9 9 8 0 0 8 2 0 0 0 0 0 1 9 9 1 7 9 9 3 6 2 7 4 5 3 6 2 7 2 7 3 6 4 5 2 7 3 6 7 2 6 3 0 9 7 2 6 3 6 3 7 2 0 9 6 3 7 2 M = A + 10 * B + 1
89 15 46 52 94 7 84 13 48 57 42 56 85 19 80 21 47 58 83 14 55 49 12 86 70 31 53 44 17 88 16 82 59 45 61 40 18 87 54 43 97 96 95 90 1 10 81 30 3 2 4 5 6 11 91 100 20 71 98 99 39 65 26 72 50 51 34 63 28 77 22 76 35 69 41 60 27 78 33 64 75 29 62 36 9 92 73 24 67 38 66 32 79 25 8 93 68 37 74 23
Each pair of order 10 Orthogonal Non-Latin Center Crosses corresponds with 8 * (8!)2 = 13.005.619.200 pairs.
Order 10 Inlaid Magic Squares with order 3 Simple Magic Square Inlays based on Latin Squares have been discussed in
Section 10.4.2.
10.3 Magic Squares, Prime Numbers
When the elements {ai, i = 1 ... 10} and {bj, j = 1 ... 10) of a valid pair of Orthogonal Semi-Latin Squares (A, B) - as applied in Section 10.2.2 above - comply with following condition:
the resulting square M = A + B will be an order 10 Prime Number Simple Magic Square.
Attachment 10.3 contains miscellaneous correlated series
{ai, i = 1 ... 10}
and
{bj, j = 1 ... 10).
Attachment 10.3.1 contains the resulting Prime Number Simple Magic Squares for miscellaneous Magic Sums (Sm).
10.3.2 Symmetric Magic Squares
Prime Number Symmetric Magic Squares require that the series {ai, i = 1 ... 10} and {bj, j = 1 ... 10) of a valid pair of Orthogonal Latin Diagonal Squares (A, B) comply with following conditions:
Such order 10 Correlated Balanced Magic Series, resulting in Prime Number Symmetric Magic Squares, have not yet been found.
The obtained results regarding the order 10 (Semi) Latin - and related Magic Squares, as deducted and discussed in previous sections, are summarized in following table:
Comparable methods as described above, can be used to construct order 11 (Semi) Latin - and related (Pan) Magic Squares,
which will be described in following sections.
|
Index | About the Author |