Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
3.0 Magic Cubes (4 x 4 x 4)
In previous sections several Classes of order 4 Magic Cubes have been discussed with following main characteristics:
Next sections will deal with some additional categories of Simple and Patriagonal Magic Cubes.
3.13 Simple Magic Cubes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Simple Magic Cubes with Horizontal Associated Magic Planes. a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = s1 - a(60) - a(62) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(45) = s1 - a(46) - a(47) - a(48) a(43) = s1 - a(44) - a(47) - a(48) a(42) = s1 - a(44) - a(46) - a(48) a(41) = s1 - a(42) - a(43) - a(44) a(31) = s1 - a(32) - a(46) - a(48) + a(61) - a(64) a(29) = s1 - a(30) - a(31) - a(32) a(28) = - a(32) + a(44) - a(45) + a(62) + a(63) a(27) = a(32) - a(44) - a(47) + 2 * a(64) a(26) = s1 - a(28) - a(30) - a(32) a(25) = s1 - a(26) - a(27) - a(28) a(16) = s1 - a(32) - a(48) - a(64) a(15) = s1 - a(31) - a(47) - a(63) a(14) = s1 - a(30) - a(46) - a(62) a(13) = a(30) + a(47) - a(64) a(12) = s1 - a(28) - a(44) - a(60) a(11) = s1 - a(27) - a(43) - a(59) a(10) = s1 - a(26) - a(42) - a(58) a(9) = s1 - a(25) - a(41) - a(57)
with
a(30),
a(32),
a(44),
a(46) ... a(48),
a(60),
a(62) ... a(64)
the independent variables.
3.13.2 Horizontal Pan Magic Planes (3D-Compact)
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Simple Magic Cubes with Horizontal Pan Magic Planes. a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = a(60) - a(62) + a(64) a(57) = - a(60) + a(62) + a(63) a(46) = s1 - a(47) - a(62) - a(63) a(45) = - a(48) + a(62) + a(63) a(44) = s1 - a(47) - a(60) - a(63) a(43) = - a(48) + a(60) + a(63) a(42) = a(48) - a(60) + a(62) a(41) = a(47) + a(60) - a(62) a(29) = s1 - a(30) - a(31) - a(32) a(28) = s1 - a(31) - 2 * a(32) + a(43) - a(48) a(27) = a(32) + 2 * a(48) - a(60) - a(63) a(26) = a(29) - 2 * a(48) + a(60) + a(63) a(25) = s1 - a(26) - a(27) - a(28) a(16) = s1 - a(32) - a(48) - a(64) a(15) = s1 - a(31) - a(47) - a(63) a(14) = - a(30) + a(47) + a(63) a(13) = s1 - a(14) - a(15) - a(16) a(12) = s1 - a(28) - a(44) - a(60) a(11) = s1 - a(27) - a(43) - a(59) a(10) = s1 - a(26) - a(42) - a(58) a(9) = s1 - a(10) - a(11) - a(12)
with a(30) ... a(32), a(47), a(48), a(60) and a(62) ... a(64) the independent variables.
3.13.3 Associated with Horizontal Magic Planes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Associated Simple Magic Cubes with Horizontal Magic Planes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(55) = a(56) - a(58) + a(60) - a(61) + a(64) a(54) = s1 - a(55) - a(58) - a(59) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) = s1 - a(50) - a(51) - a(52) a(46) = s1 - a(47) - a(62) - a(63) a(45) = s1 - a(46) - a(47) - a(48) a(43) = s1 - a(48) - a(59) - a(64) a(42) = a(48) - a(58) + a(64) a(41) = s1 - a(42) - a(43) - a(44) a(40) = s1 - a(44) - a(56) - a(60) a(39) = a(48) - a(56) + a(58) - a(60) + a(61) a(38) = - a(39) + a(58) + a(59) a(37) = s1 - a(38) - a(39) - a(40) a(36) = s1 - a(39) - a(42) - a(45) a(35) = s1 - a(39) - a(43) - a(47) a(34) = s1 - a(38) - a(42) - a(46) a(33) = s1 - a(34) - a(35) - a(36)
with a(44), a(47), a(48), a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
3.13.4 Associated and 3D-Compact
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Associated 3D-Compact Simple Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(58) = s1 - a(59) - a(62) - a(63) a(57) = - a(60) + a(62) + a(63) a(55) = s1 - a(56) - a(59) - a(60) a(53) = - a(54) + a(59) + a(60) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(56) + a(60) - a(63) a(50) = - a(54) + a(59) + a(63) a(49) = a(54) - a(59) + a(64) a(46) = s1 - a(47) - a(62) - a(63) a(45) = - a(48) + a(62) + a(63) a(43) = 2*s1 - a(44) - a(47) - a(48) - a(59) - a(60) - a(63) - a(64) a(42) = - a(43) + a(62) + a(63) a(41) = s1 - a(44) - a(62) - a(63) a(40) = s1 - a(44) - a(56) - a(60) a(39) = - a(43) + a(56) + a(60) a(38) = - a(39) - a(54) + a(56) + a(59) + a(60) a(37) = a(44) + a(54) - a(59) a(36) = - a(48) + a(56) + a(60) a(35) = s1 - a(47) - a(56) - a(60) a(34) = a(47) + a(54) - a(59) a(33) = a(48) - a(54) + a(59)
with a(44), a(47), a(48), a(54), a(56), a(59), a(60) and a(62) ... a(64) the independent variables.
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Plane Symmetrical Simple Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) = s1 - a(50) - a(51) - a(52) a(45) = s1 - a(46) - a(47) - a(48) a(41) = s1 - a(42) - a(43) - a(44) a(39) = a(42) + a(56) + a(60) - a(62) - a(63) a(38) = a(43) + a(53) + a(57) - a(62) - a(63) a(37) = s1 - a(38) - a(39) - a(40) a(36) = s1 - a(40) - a(44) - a(48) a(35) = s1 - a(39) - a(43) - a(47) a(34) = s1 - a(38) - a(42) - a(46) a(33) = s1 - a(34) - a(35) - a(36)
with a(40), a(42) ... a(44), a(46) ... a(48), a(54) ... a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
3.14 Pantriagonal Magic Cubes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Complete Pantriagonal Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) = s1 - a(53) - a(57) - a(61) a(45) = s1 - a(46) - a(47) - a(48) a(42) = 2*s1 - a(44) - a(46) - a(48) - a(58) - a(60) - a(62) - a(64) a(41) = s1 - a(42) - a(43) - a(44) a(40) = a(46) - a(56) + a(62) a(39) = a(45) - a(55) + a(61) a(38) = a(48) - a(54) + a(64) a(37) = a(47) - a(53) + a(63) a(36) = s1 - a(44) - a(46) - a(48) + a(56) - a(62) a(35) = - a(43) + a(46) + a(48) + a(55) - a(61) a(34) = - s1 + a(44) + a(54) + a(58) + a(60) + a(62) a(33) = a(43) + a(53) - a(58) - a(60) + a(61)
with a(43), a(44), a(46) ... a(48), a(54) ... a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
3.14.2 Complete with Horizontal Magic Planes
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing Complete Pantriagonal Magic Cubes with Horizontal Magic Planes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(55) = a(56) - a(58) + a(60) - a(61) + a(64) a(54) = s1 - a(55) - a(58) - a(59) a(53) = - a(56) + a(58) + a(59) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(54) + a(58) - a(63) a(50) = s1 - a(51) - a(62) - a(63) a(49) = a(56) + a(60) - a(61) a(45) = s1 - a(46) - a(47) - a(48) a(44) = a(45) - a(46) - a(48) - a(60) + 2 * a(61) + a(63) a(43) = s1 - a(48) - a(59) - a(64) a(42) = s1 - a(45) - a(58) - a(61) a(41) = a(42) - a(43) - a(47) + 2 * a(58) + a(60) - a(63) a(40) = a(46) - a(56) + a(62) a(39) = a(45) - a(56) + a(58) - a(60) + 2 * a(61) - a(64) a(38) = a(48) - a(54) + a(64) a(37) = a(47) + a(56) - a(58) - a(59) + a(63) a(36) = s1 - a(45) - a(54) - a(59) a(35) = - a(39) - a(47) + a(48) + a(59) + a(64) a(34) = s1 - a(35) - a(46) - a(47) a(33) = - a(36) + a(46) + a(47)
with a(46) ... a(48), a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing 2D-Compact Pantriagonal Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = a(60) - a(62) + a(64) a(57) = - a(60) + a(62) + a(63) a(55) = - a(56) + a(63) + a(64) a(54) = a(56) + a(62) - a(64) a(53) = s1 - a(56) - a(62) - a(63) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(56) + a(60) - a(63) a(50) = s1 - a(56) - a(60) - a(62) a(49) = a(56) + a(60) - a(61) a(47) = s1 - a(48) - a(63) - a(64) a(46) = a(48) - a(62) + a(64) a(45) = - a(48) + a(62) + a(63) a(44) = s1 - a(48) - a(60) - a(64) a(43) = a(48) - a(59) + a(64) a(42) = s1 - a(48) - a(58) - a(64) a(41) = a(48) - a(57) + a(64) a(40) = a(48) - a(56) + a(64) a(39) = s1 - a(48) - a(55) - a(64) a(38) = a(48) - a(54) + a(64) a(37) = - a(46) + a(56) + a(63) a(36) = - a(48) + a(56) + a(60) a(35) = s1 - a(47) - a(56) - a(60) a(34) = - a(48) + a(54) + a(60) a(33) = a(48) + a(53) - a(60) a(31) = - a(32) + a(63) + a(64) a(30) = a(32) + a(62) - a(64) a(29) = s1 - a(32) - a(62) - a(63) a(28) = - a(32) + a(60) + a(64) a(27) = s1 + a(32) - a(60) - a(63) - 2 * a(64) a(26) = - a(32) + a(60) - a(62) + 2 * a(64) a(25) = a(32) - a(60) + a(62) + a(63) - a(64) a(24) = a(32) + a(56) - a(64) a(23) = - a(32) - a(56) + a(63) + 2 * a(64) a(22) = a(32) + a(56) + a(62) - 2 * a(64) a(21) = s1 - a(32) - a(56) - a(62) - a(63) + a(64) a(20) = s1 - a(32) - a(56) - a(60) a(19) = a(32) + a(56) + a(60) - a(63) - a(64) a(18) = s1 - a(32) - a(56) - a(60) - a(62) + a(64) a(17) = -s1 + a(32) + a(56) + a(60) + a(62) + a(63) a(16) = s1 - a(32) - a(48) - a(64) a(15) = a(32) + a(48) - a(63) a(14) = s1 - a(32) - a(48) - a(62) a(13) = a(32) + a(48) - a(61) a(12) = a(32) + a(48) - a(60) a(11) = - a(32) - a(48) + a(60) + a(63) + a(64) a(10) = a(32) + a(48) - a(60) + a(62) - a(64) a(9) = s1 - a(32) - a(48) + a(60) - a(62) - a(63) a(8) = s1 - a(32) - a(48) - a(56) a(7) = a(32) + a(48) + a(56) - a(63) - a(64) a(6) = s1 - a(32) - a(48) - a(56) - a(62) + a(64) a(5) = -s1 + a(32) + a(48) + a(56) + a(62) + a(63) a(4) = -s1 + a(32) + a(48) + a(56) + a(60) + a(64) a(3) = s1 - a(32) - a(48) - a(56) - a(60) + a(63) a(2) = -s1 + a(32) + a(48) + a(56) + a(60) + a(62) a(1) = s1 - a(32) - a(48) - a(56) - a(60) + a(61)
with a(32), a(48), a(56), a(60) and a(62) ... a(64) the independent variables.
3.14.4 2D-Compact and Plane Symmetrical
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing 2D-Compact Plane Symmetrical Pantriagonal Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(59) = s1 - a(60) - a(63) - a(64) a(58) = a(60) - a(62) + a(64) a(57) = - a(60) + a(62) + a(63) a(55) = - a(56) + a(63) + a(64) a(54) = a(56) + a(62) - a(64) a(53) = s1 - a(56) - a(62) - a(63) a(52) = s1 - a(56) - a(60) - a(64) a(51) = a(56) + a(60) - a(63) a(50) = s1 - a(56) - a(60) - a(62) a(49) = a(56) + a(60) - a(61) a(47) = s1 - a(48) - a(63) - a(64) a(46) = a(48) - a(62) + a(64) a(45) = - a(48) + a(62) + a(63) a(44) = s1 - a(48) - a(60) - a(64) a(43) = a(48) - a(59) + a(64) a(42) = s1 - a(48) - a(58) - a(64) a(41) = a(48) + a(58) - a(63) a(40) = a(48) - a(56) + a(64) a(39) = s1 - a(48) - a(55) - a(64) a(38) = a(48) - a(54) + a(64) a(37) = - a(48) + a(54) + a(63) a(36) = - a(48) + a(56) + a(60) a(35) = a(48) - a(51) + a(64) a(34) = - a(48) + a(54) + a(60) a(33) = a(48) + a(53) - a(60)
with a(48), a(56), a(60) and a(62) ... a(64) the independent variables.
3.15a Spreadsheet Solutions (2)
The linear equations as deducted in previous sections have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable Magic Cubes of the 4th order (wrong solutions are obvious).
The obtained results regarding the miscellaneous types of order 4 Magic Cubes as deducted and discussed in previous sections are summarized in following table: |
Class
Main Characteristics
Method
Tag
Subroutine
Results
Simple
Horizontal Pan Magic Planes
Standard
-
Attachment 3.13.2
6668288Pantriagonal
2D Compact
Standard
-
Attachment 3.14.3
3225602D Compact, Plane Symmetrical
Standard
-
Attachment 3.14.4
46080
The Quaternary Solutions will be discussed in Section 3.16. |
Index | About the Author |