Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
3.9 Associated Magic Cubes
An Associated Magic Cube is a Simple Central Symmetric Magic Cube, for which the defining properties can be summarised as follows:
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing the Associated Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(53) = s1 - a(54) - a(55) - a(56) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(55) - a(59) - a(63) a(50) = s1 - a(54) - a(58) - a(62) a(49) =-2*s1 + a(54) + a(55) + a(56) + a(58) + a(59) + a(60) + a(62) + a(63) + a(64) a(45) = s1 - a(46) - a(47) - a(48) a(42) = 2*s1 - a(43) - a(46) - a(47) - a(58) - a(59) - a(62) - a(63) a(41) = - s1 - a(44) + a(46) + a(47) + a(58) + a(59) + a(62) + a(63) a(40) = - a(44) + a(46) + a(47) - a(56) - a(60) + a(62) + a(63) a(39) = 2*s1 - a(43) - a(46) - a(47) - a(55) - a(59) - a(62) - a(63) a(38) = a(43) - a(54) + a(59) a(37) = - s1 + a(44) + a(54) + a(55) + a(56) + a(60) a(36) = s1 - a(46) - a(47) - a(48) + a(56) + a(60) - a(62) - a(63) a(35) = - s1 + a(46) + a(55) + a(59) + a(62) + a(63) a(34) = - s1 + a(47) + a(54) + a(58) + a(62) + a(63) a(33) = 2*s1 + a(48) - a(54) - a(55) - a(56) - a(58) - a(59) - a(60) - a(62) - a(63)
with a(43), a(44), a(46) ... a(48), a(54) ... a(56), a(58) ... a(60), a(62) ... a(64) the independent variables.
3.10 Pantriagonal/Associated Magic Cubes
A Pantriagonal/Associated Magic Cube is a Central Symmetric Magic Cube for which also the Pantriagonals sum to the Magic Sum.
The defining properties result, after deduction of the corresponding equations, in following set of linear equations describing the Pantriagonal/Associated Magic Cubes. a(61) = s1 - a(62) - a(63) - a(64) a(57) = s1 - a(58) - a(59) - a(60) a(55) = a(56) + a(58) + a(60) - a(62) - a(63) a(54) = s1 - a(56) - a(58) - a(60) a(53) = - a(56) + a(62) + a(63) a(52) = s1 - a(56) - a(60) - a(64) a(51) = s1 - a(56) - a(58) - a(59) - a(60) + a(62) a(50) = a(56) + a(60) - a(62) a(49) =-s1 + a(56) + a(58) + a(59) + a(60) + a(64) a(47) = - a(48) + a(59) + a(60) a(46) = s1 + a(48) - a(58) - 2 * a(59) - a(60) a(45) = - a(48) + a(58) + a(59) a(44) = - a(48) + a(59) + a(63) a(43) = a(48) - a(59) + a(64) a(42) = s1 - a(48) + a(59) - a(62) - a(63) - a(64) a(41) = a(48) - a(59) + a(62) a(40) = s1 + a(48) - a(56) - a(58) - 2 * a(59) - a(60) + a(62) a(39) = s1 - a(48) - a(56) + a(59) - a(60) - a(64) a(38) =-s1 + a(48) + a(56) + a(58) + a(60) + a(64) a(37) = - a(48) + a(56) + a(59) + a(60) - a(62) a(36) = - a(48) + a(56) + a(58) + a(59) + a(60) - a(62) - a(63) a(35) = a(48) + a(56) - a(59) a(34) = - a(48) - a(56) + a(59) + a(62) + a(63) a(33) = s1 + a(48) - a(56) - a(58) - a(59) - a(60)
with a(48), a(56), a(58) ... a(60) and a(62) ... a(64) the independent variables.
3.11a Spreadsheet Solutions (1)
The linear equations deducted in sections 3.2.1, 3.2.2, 3.7.2, 3.8.2, 3.9.2 and 3.10.2 above, have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable Magic Cubes of the 4th order (wrong solutions are obvious).
The obtained results regarding the miscellaneous types of order 4 Magic Cubes as deducted and discussed in previous sections are summarized in following table: |
Class
Main Characteristics
Method
Tag
Subroutine
Results
Almost Perfect
Plane Symmetrical
Standard
-
Attachment 3.2.1
184320Pantriagonal
2D-Compact, Complete
Standard
-
Attachment 3.7.3
46080Associated
Standard
-
Attachment 3.10.2
1815552-
-
-
-
-
-
The Quaternary Solutions will be discussed in Section 3.12. |
Index | About the Author |