Office Applications and Entertainment, Magic Cubes

Vorige Pagina Volgende Pagina Index About the Author

4.6 Analytic Solution Almost Perfect Center Symmetric Magic Cubes

About a century before the 5th order Perfect Magic Cube was published, following Almost Perfect Center Symmetric Magic Cube was published by Andrews (1908):

Magic Cube, Almost Perfect Center Symmetric Magic

Plane 11 (Top)

67 98 104 10 36
110 11 42 73 79
48 54 85 111 17
86 117 23 29 60
4 35 61 92 123

Plane 12

106 12 43 74 80
49 55 81 112 18
87 118 24 30 56
5 31 62 93 124
68 99 105 6 37

Plane 13

50 51 82 113 19
88 119 25 26 57
1 32 63 94 125
69 100 101 7 38
107 13 44 75 76

Plane 14

89 120 21 27 58
2 33 64 95 121
70 96 102 8 39
108 14 45 71 77
46 52 83 114 20

Plane 15

3 34 65 91 122
66 97 103 9 40
109 15 41 72 78
47 53 84 115 16
90 116 22 28 59


The defining properties of an Almost Perfect Center Symmetric Cube of the fifth order can be summarised as follows:

  • The Rows (25), Columns (25), Pillars (25) and Space Diagonals (4) sum to the Magic Sum (315);

  • The Main Diagonals of the horizontal planes sum to the Magic Sum (315);

  • For both sets vertical planes 6 out of 10 Main Diagonals sum to the Magic Sum (315);

  • The equations for Center Symmetrical Cubes are applicable

Although this definition depends from the orientation of the cube, this will be used as a guideline in the equations below.

Magic Cube (5 x 5 x 5)

Plane 11 (Top)

a101 a102 a103 a104 a105
a106 a107 a108 a109 a110
a111 a112 a113 a114 a115
a116 a117 a118 a119 a120
a121 a122 a123 a124 a125

Plane 12

a76 a77 a78 a79 a80
a81 a82 a83 a84 a85
a86 a87 a88 a89 a90
a91 a92 a93 a94 a95
a96 a97 a98 a99 a100

Plane 13

a51 a52 a53 a54 a55
a56 a57 a58 a59 a60
a61 a62 a63 a64 a65
a66 a67 a68 a69 a70
a71 a72 a73 a74 a75

Plane 14

a26 a27 a28 a29 a30
a31 a32 a33 a34 a35
a36 a37 a38 a39 a40
a41 a42 a43 a44 a45
a46 a47 a48 a49 a50

Plane 15

a1 a2 a3 a4 a5
a6 a7 a8 a9 a10
a11 a12 a13 a14 a15
a16 a17 a18 a19 a20
a21 a22 a23 a24 a25


After deduction of the defining equations, the following set of linear equations - describing the Almost Perfect Center Symmetric Cubes of the 5th order - can be obtained:

a121 =     s1 - a122 - a123 - a124 - a125
a116 =     s1 - a117 - a118 - a119 - a120
a111 =     s1 - a112 - a113 - a114 - a115
a109 =          a110 - a113 + a115 - a117 + a120 - a121 + a125
a107 =(  3*s1 - a108-2*a109 - a112-3*a113 - a114-2*a117 - a118 - 2*a119)/2
a106 =     s1 - a107 - a108 - a109 - a110
a105 =     s1 - a109 - a113 - a117 - a121
a104 =     s1 - a109 - a114 - a119 - a124
a103 =     s1 - a108 - a113 - a118 - a123
a102 =     s1 - a107 - a112 - a117 - a122
a101 =     s1 - a102 - a103 - a104 - a105
a96  =     s1 - a97  - a98  - a99  - a100
a91  =     s1 - a92  - a93  - a94  - a95
a88  =          a89 -2*a93+ 2*a94- 2*a98+2*a99-  a113+ a115-2*a118+2*a120-2*a123+2*a125
a87  =(  5*s1 - a88 -2*a89- 4*a90+   a93-4*a94-2*a95-2*a97- 4*a99- 4*a100-3*a112+  a114-3*a115-2*a117+2*a118+
                                                                                       +2*a119-2*a120+3*a123+2*a124)/3
a86  =     s1 - a87 -  a88 -  a89 -  a90
a85  =(- 4*s1+6*a89-   a90 +3*a92 -9*a93+9*a94-3*a95-3*a97-11*a98 +5*a99- 6*a100+ 2*a108+3*a110-4*a113+4*a114+10*a115+
                                                          - 2*a117-8*a118+2*a119+13*a120+2*a122-5*a123+4*a124+14*a125)/5
a84  =    -s1  +  a85 - a89 + a90-a92 +2*a93 -2*a94 +a95 +  a97+3*a98-a99+2*a100+a113-a115+2*a118-2*a120+2*a123-2*a125
a83  =            a84 + a93 - a94-a108 + a110+  a118-a120
a82  =(  7*s1  +2*a84+2*a87-2*a89-a108-4*a110+3*a112+a113-5*a114-4*a115+4*a117-a118-4*a119-4*a120-2*a122-4*a123+
                                                                                                 -6*a124-8*a125)/2
a81  =     s1  -  a82 - a83 - a84 -  a85
a80  =     s1  -  a84 - a88 - a92 -  a96
a79  =     s1  -  a84 - a89 - a94 -  a99
a78  =     s1  -  a83 - a88 - a93 -  a98
a77  =     s1  -  a82 - a87 - a92 -  a97
a76  =     s1  -  a77 - a78 - a79 -  a80
a75  =(-13*s1/5+2*a76-2*a100+ a108+2*a110+a112-a113+a114+2*a115+  a118+2*a120+2*a122+2*a123+2*a124)/2
a74  =(- 3*s1/5+2*a77-2*a99 + a108+2*a110-a112+a113+a114+2*a115-2*a116-4*a117-  a118+2*a123+4*a125)/2
a73  =   6*s1/5+  a78 - a98 - a108-  a113-a118-   2*a123
a72  =     s1  +  a73 - a97 + a99 +  a113-a114+a117-a119-2*a122-a123-2*a124
a71  =     s1  -  a72 - a73 - a74 -  a75
a70  =(- 3*s1/5+2*a81-2*a95 - a108-2*a110+a112+3*a113+a114+2*a117+a118+2*a119-2*a120)/2
a69  =( 12*s1/5+2*a82-2*a94 - a108-2*a110+a111-a115-a118-4*a119-2*a120+2*a121-2*a125)/2
a68  =     s1/5+  a83 - a93 + a108 - a118
a67  =     s1/5+  a84 - a92 + a110 - a113+a115-2*a117+a120-a121+a125
a66  =     s1  -  a67 - a68 - a69  - a70
a65  =  11*s1/5-  a87-2*a89-2*a90 +2*a93-2*a94+2*a98-2*a99-a112-a114-3*a115+2*a118-2*a120+2*a123-2*a125
a64  =     s1/5+  a87 - a89 + a112 - a114

a63 =   s1/5
a62 = 2*s1/5 - a64
a61 = 2*s1/5 - a65
a60 = 2*s1/5 - a66
a59 = 2*s1/5 - a67
a58 = 2*s1/5 - a68
a57 = 2*s1/5 - a69
a56 = 2*s1/5 - a70
a55 = 2*s1/5 - a71
a54 = 2*s1/5 - a72
a53 = 2*s1/5 - a73
a52 = 2*s1/5 - a74
a51 = 2*s1/5 - a75
a50 = 2*s1/5 - a76
a49 = 2*s1/5 - a77

a48 = 2*s1/5 - a78
a47 = 2*s1/5 - a79
a46 = 2*s1/5 - a80
a45 = 2*s1/5 - a81
a44 = 2*s1/5 - a82
a43 = 2*s1/5 - a83
a42 = 2*s1/5 - a84
a41 = 2*s1/5 - a85
a40 = 2*s1/5 - a86
a39 = 2*s1/5 - a87
a38 = 2*s1/5 - a88
a37 = 2*s1/5 - a89
a36 = 2*s1/5 - a90
a35 = 2*s1/5 - a91
a34 = 2*s1/5 - a92
a33 = 2*s1/5 - a93

a32 = 2*s1/5 - a94
a31 = 2*s1/5 - a95
a30 = 2*s1/5 - a96
a29 = 2*s1/5 - a97
a28 = 2*s1/5 - a98
a27 = 2*s1/5 - a99
a26 = 2*s1/5 - a100
a25 = 2*s1/5 - a101
a24 = 2*s1/5 - a102
a23 = 2*s1/5 - a103
a22 = 2*s1/5 - a104
a21 = 2*s1/5 - a105
a20 = 2*s1/5 - a106
a19 = 2*s1/5 - a107
a18 = 2*s1/5 - a108
a17 = 2*s1/5 - a109

a16 = 2*s1/5 - a110
a15 = 2*s1/5 - a111
a14 = 2*s1/5 - a112
a13 = 2*s1/5 - a113
a12 = 2*s1/5 - a114
a11 = 2*s1/5 - a115
a10 = 2*s1/5 - a116
a9  = 2*s1/5 - a117
a8  = 2*s1/5 - a118
a7  = 2*s1/5 - a119
a6  = 2*s1/5 - a120
a5  = 2*s1/5 - a121
a4  = 2*s1/5 - a122
a3  = 2*s1/5 - a123
a2  = 2*s1/5 - a124
a1  = 2*s1/5 - a125

The linear equations shown above, are ready to be solved, for the magic constant 315.

The solutions can be obtained by guessing:

    a( 89), a( 90), a( 92) ... a( 95), a( 97) ... a(100),
    a(108), a(110), a(112) ... a(115), a(117) ... a(120) and a(122) ... a(125)

and filling out these guesses in the abovementioned equations.

For distinct integers also following relations should be applied:

0 < a(i) =< 125       for i = 1 ... 88, 91, 96, 101 ... 107, 109, 111, 116, 121
a(i) ≠ a(j)           for i ≠ j
Cint(a(i)) = a(i)     for i = 69, 70, 74, 75, 82, 85, 87 and 107

which can be incorporated in a guessing routine which might be used to find other 5th order Almost Perfect Center Symmetric Cubes.

However, the equations deducted above can be applied in a more efficient way to generate Almost Perfect Center Symmetric Cubes, which will be discussed in Section 5.8.


Vorige Pagina Volgende Pagina Index About the Author