Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
4.7 Analytic Solution Semi Pan Magic Cubes
One of the most magic cubes of the 5th order is the Semi Pan Magic Cube. An example is shown below.
|
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
In the example shown above the (pan) magic diagonals for the horizontal planes 1.1 thru 1.5 and the vertical planes 3.1 thru 3.5 sum
to 315.
This is, however, not the case for the vertical planes 2.1 thru 2.5.
|
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
If the equations for symmetric space diagonals are added:
following equations, applicable for a Symmetrical Cube, are automatically fulfilled: |
Center Pillar:
a13 + a113 = 126
Plane 13:
a51 + a75 = 126
a52 + a74 = 126
a53 + a73 = 126
a54 + a72 = 126
a55 + a71 = 126
a56 + a70 = 126
a60 + a66 = 126
a61 + a65 = 126Planes 12/14:
a26 + a100 = 126
a27 + a99 = 126
a29 + a97 = 126
a30 + a96 = 126
a31 + a95 = 126
a35 + a91 = 126
a41 + a85 = 126
a45 + a81 = 126
a46 + a80 = 126
a47 + a79 = 126
a49 + a77 = 126
a50 + a76 = 126Plane 23:
a3 + a123 = 126
a23 + a103 = 126
a78 + a48 = 126
a98 + a28 = 126
Plane 33:
a11 + a115 = 126
a15 + a111 = 126
a36 + a90 = 126
a40 + a86 = 126Inner Cube:
Center Pillar:
a38 + a88 = 126
Plane 13:
a57 + a69 = 126
a58 + a68 = 126
a59 + a67 = 126
a62 + a64 = 126
Plane 23:
a33 + a93 = 126
a43 + a83 = 126
Plane 33:
a37 + a89 = 126
a39 + a87 = 126
After deduction of the defining equations, the following set of linear equations - describing the Semi Pan Magic Cubes of the 5th order - can be obtained: a(121) = 315 - a(122) - a(123) - a(124) - a(125) a(116) = 315 - a(117) - a(118) - a(119) - a(120) a(115) = a(117) + a(118) - a(125) a(114) = 315 - a(118) - a(119) - a(120) - a(124) a(113) = 315 - a(117) - a(118) - a(119) - a(123) a(112) = a(119) + a(120) - a(122) a(111) = a(118) + a(119) - a(121) a(110) = 315 - a(117) - a(118) - a(122) - a(123) a(109) = -315 + a(118) + a(119) + a(120) + a(123) + a(124) + a(125) a(108) = -315 + a(117) + a(118) + a(119) + a(122) + a(123) + a(124) a(107) = 315 - a(119) - a(120) - a(124) - a(125) a(106) = 315 - a(118) - a(119) - a(123) - a(124) a(105) = - a(120) + a(122) + a(123) a(104) = 315 - a(119) - a(123) - a(124) - a(125) a(103) = 315 - a(118) - a(122) - a(123) - a(124) a(102) = - a(117) + a(124) + a(125) a(101) = -315 + a(117) + a(118) + a(119) + a(120) + a(123) + a(124) a(100) = -441 + a(117) + a(118) + a(119) + a(120) + a(122) + 2 * a(123) + a(124) a( 99) = 189 - a(117) - a(123) a( 98) = 504 - a(118) - 2 * a(122) - 2 * a(123) - 2 * a(124) a( 97) = 189 - a(119) - a(123) a( 96) = -126 - a(120) + a(122) + 2 * a(123) + a(124) a( 95) = 189 + a(117) - a(119) - a(123) - a(124) a( 94) = 504 - a(118) - 2 * a(119) - 2 * a(120) - a(124) - a(125) a( 93) = -126 + a(122) + a(123) + a(124) a( 92) = -441 + a(118) + 2 * a(119) + 2 * a(120) + a(123) + a(124) + a(125) a( 91) = 189 - a(117) + a(119) - a(122) - a(123) a( 90) = -126 - a(117) + a(119) + a(120) + a(124) + a(125) a( 89) = -441 + a(118) + 3 * a(119) + 2 * a(120) - a(122) + a(123) + a(124) + a(125) a( 88) = -126 + a(118) + a(122) + a(124) a( 87) = 504 + a(117) - a(118) - 2 * a(119) - 2 * a(120) - 2 * a(124) - a(125) a( 86) = 504 - a(118) - 2 * a(119) - a(120) - a(123) - a(124) - a(125) a( 85) = 189 - a(119) - 2 * a(120) + a(122) + a(123) - a(125) a( 84) = 504 + a(117) - a(118) - 2 * a(119) - a(120) - a(123) - 2 * a(124) - a(125) a( 83) = 504 - a(117) - a(118) - a(119) - a(122) - 2 * a(123) - a(124) a( 82) = -126 - a(117) + 2 * a(119) + a(120) - a(122) + a(124) + a(125) a( 81) = -756 + a(117) + 2 * a(118) + 2 * a(119) + 2 * a(120) + a(122) + 2 * a(123) + 2 * a(124) + a(125) a( 80) = 504 - a(117) - a(118) - 2 * a(122) - 2 * a(123) - a(124) a( 79) = -441 + a(118) + a(119) + a(120) + a(122) + a(123) + 2 * a(124) + a(125) a( 78) = -441 + a(117) + a(118) + a(119) + a(122) + 3 * a(123) + a(124) a( 77) = 189 - a(119) - a(120) + a(122) - a(125) a( 76) = 504 - a(118) - a(119) - a(122) - 2 * a(123) - 2 * a(124) a( 75) = 693 - a(118) - a(119) - 2 * a(122) - 3 * a(123) - 2 * a(124) - a(125) a( 74) = 63 - a(119) - a(120) + a(122) + a(123) a( 73) = -567 + a(117) + a(118) + a(119) + 2 * a(122) + 3 * a(123) + 2 * a(124) a( 72) = -252 + a(118) + a(119) + a(120) + a(123) + a(124) a( 71) = 378 - a(117) - a(118) - a(122) - 2 * a(123) - a(124) + a(125) a( 70) = -567 + a(118) + 2 * a(119) + a(120) + a(122) + 2 * a(123) + 2 * a(124) + a(125) a( 69) = -252 - a(117) + a(118) + 2 * a(119) + 2 * a(120) - a(122) + a(124) + a(125) a( 68) = 378 - a(118) - a(122) - 2 * a(123) - a(124) a( 67) = 693 - a(118) - 3 * a(119) - 2 * a(120) - a(123) - 2 * a(124) - a(125) a( 66) = 63 + a(117) - a(119) - a(120) + a(122) + a(123) - a(125) a( 65) = 378 - a(118) - 2 * a(119) - 2 * a(120) + a(122) - a(124) a( 64) = 693 + a(117) - a(118) - 3 * a(119) - 2 * a(120) - a(123) - 2 * a(124) - 2 * a(125)
The linear equations shown above, are ready to be solved, for the magic constant 315.
0 < a(i) =< 125 for i = 1 ... 116, 121
which have been incorporated in an optimized guessing routine (MgcCube5d).
|
Index | About the Author |