Office Applications and Entertainment, Magic Cubes

Vorige Pagina Volgende Pagina Index About the Author

4.7 Analytic Solution Semi Pan Magic Cubes

One of the most magic cubes of the 5th order is the Semi Pan Magic Cube. An example is shown below.

Magic Cube, Semi Pan Magic

Plane 11 (Top)

78 109 15 41 72
45 71 77 108 14
107 13 44 75 76
74 80 106 12 43
11 42 73 79 110

Plane 12

40 66 97 103 9
102 8 39 70 96
69 100 101 7 38
6 37 68 99 105
98 104 10 36 67

Plane 13

122 3 34 65 91
64 95 121 2 33
1 32 63 94 125
93 124 5 31 62
35 61 92 123 4

Plane 14

59 90 116 22 28
21 27 58 89 120
88 119 25 26 57
30 56 87 118 24
117 23 29 60 86

Plane 15

16 47 53 84 115
83 114 20 46 52
50 51 82 113 19
112 18 49 55 81
54 85 111 17 48


The equations for a Semi Pan Magic Cube of the fifth order can be summarised as follows:

  • The Rows (25), Columns (25), Pillars (25) and Space Diagonals (4) sum to the Magic Sum (315);

  • Main - and Pan Diagonals of 2 of the 3 sets of planes sum to the Magic Sum (315);

  • The equations for Symmetrical Cubes are applicable

In the example shown above the (pan) magic diagonals for the horizontal planes 1.1 thru 1.5 and the vertical planes 3.1 thru 3.5 sum to 315. This is, however, not the case for the vertical planes 2.1 thru 2.5.

Although this depends from the orientation of the cube, this will be used as a guideline in the deduction below.

Magic Cube (5 x 5 x 5)

Plane 11 (Top)

a101 a102 a103 a104 a105
a106 a107 a108 a109 a110
a111 a112 a113 a114 a115
a116 a117 a118 a119 a120
a121 a122 a123 a124 a125

Plane 12

a76 a77 a78 a79 a80
a81 a82 a83 a84 a85
a86 a87 a88 a89 a90
a91 a92 a93 a94 a95
a96 a97 a98 a99 a100

Plane 13

a51 a52 a53 a54 a55
a56 a57 a58 a59 a60
a61 a62 a63 a64 a65
a66 a67 a68 a69 a70
a71 a72 a73 a74 a75

Plane 14

a26 a27 a28 a29 a30
a31 a32 a33 a34 a35
a36 a37 a38 a39 a40
a41 a42 a43 a44 a45
a46 a47 a48 a49 a50

Plane 15

a1 a2 a3 a4 a5
a6 a7 a8 a9 a10
a11 a12 a13 a14 a15
a16 a17 a18 a19 a20
a21 a22 a23 a24 a25


The equations of section 4.2 are applicable with exception of the equations for the plane diagonals of the vertical planes 2.1 thru 2.5.

Further the equations for the pan diagonals of the horizontal planes and the vertical planes 3.1 thru 3.5 have to be added (total 10 * 8 = 80 equations).

If the equations for symmetric space diagonals are added:

Outer Cube:
a1  + a125 = 126
a5  + a121 = 126


a21 + a105 = 126
a25 + a101 = 126

Inner Cube:
a32 + a94 = 126
a34 + a92 = 126


a42 + a84 = 126
a44 + a82 = 126

following equations, applicable for a Symmetrical Cube, are automatically fulfilled:

Center Pillar:
a13 + a113 = 126




Plane 13:
a51 + a75 = 126
a52 + a74 = 126
a53 + a73 = 126
a54 + a72 = 126
a55 + a71 = 126
a56 + a70 = 126
a60 + a66 = 126
a61 + a65 = 126

Planes 12/14:
a26 + a100 = 126
a27 + a99  = 126
a29 + a97  = 126
a30 + a96  = 126
a31 + a95  = 126
a35 + a91  = 126
a41 + a85  = 126
a45 + a81  = 126
a46 + a80  = 126
a47 + a79  = 126
a49 + a77  = 126
a50 + a76  = 126

Plane 23:
a3   + a123 = 126
a23  + a103 = 126
a78  + a48  = 126
a98  + a28  = 126

Plane 33:
a11  + a115 = 126
a15  + a111 = 126
a36  + a90  = 126
a40  + a86  = 126

Inner Cube:
Center Pillar:
a38 + a88 = 126


Plane 13:
a57 + a69 = 126
a58 + a68 = 126
a59 + a67 = 126
a62 + a64 = 126


Plane 23:
a33 + a93 = 126
a43 + a83 = 126


Plane 33:
a37 + a89 = 126
a39 + a87 = 126

After deduction of the defining equations, the following set of linear equations - describing the Semi Pan Magic Cubes of the 5th order - can be obtained:

a(121) =  315 - a(122) - a(123) - a(124) - a(125)
a(116) =  315 - a(117) - a(118) - a(119) - a(120)
a(115) =        a(117) + a(118) - a(125)
a(114) =  315 - a(118) - a(119) - a(120) - a(124)
a(113) =  315 - a(117) - a(118) - a(119) - a(123)
a(112) =        a(119) + a(120) - a(122)
a(111) =        a(118) + a(119) - a(121)
a(110) =  315 - a(117) - a(118) - a(122) - a(123)
a(109) = -315 + a(118) + a(119) + a(120) + a(123) + a(124) + a(125)
a(108) = -315 + a(117) + a(118) + a(119) + a(122) + a(123) + a(124)
a(107) =  315 - a(119) - a(120) - a(124) - a(125)
a(106) =  315 - a(118) - a(119) - a(123) - a(124)
a(105) =      - a(120) + a(122) + a(123)
a(104) =  315 - a(119) - a(123) - a(124) - a(125)
a(103) =  315 - a(118) - a(122) - a(123) - a(124)
a(102) =      - a(117) + a(124) + a(125)
a(101) = -315 + a(117) + a(118) + a(119) + a(120) + a(123) + a(124)
a(100) = -441 + a(117) + a(118) + a(119) + a(120) + a(122) + 2 * a(123) + a(124)
a( 99) =  189 - a(117) - a(123)
a( 98) =  504 - a(118) - 2 * a(122) - 2 * a(123) - 2 * a(124)
a( 97) =  189 - a(119) - a(123)
a( 96) = -126 - a(120) + a(122) + 2 * a(123) + a(124)
a( 95) =  189 + a(117) - a(119) - a(123) - a(124)
a( 94) =  504 - a(118) - 2 * a(119) - 2 * a(120) - a(124) - a(125)
a( 93) = -126 + a(122) + a(123) + a(124)
a( 92) = -441 + a(118) + 2 * a(119) + 2 * a(120) + a(123) + a(124) + a(125)
a( 91) =  189 - a(117) + a(119) - a(122) - a(123)
a( 90) = -126 - a(117) + a(119) + a(120) + a(124) + a(125)
a( 89) = -441 + a(118) + 3 * a(119) + 2 * a(120) - a(122) + a(123) + a(124) + a(125)
a( 88) = -126 + a(118) + a(122) + a(124)
a( 87) =  504 + a(117) - a(118) - 2 * a(119) - 2 * a(120) - 2 * a(124) - a(125)
a( 86) =  504 - a(118) - 2 * a(119) - a(120) - a(123) - a(124) - a(125)
a( 85) =  189 - a(119) - 2 * a(120) + a(122) + a(123) - a(125)
a( 84) =  504 + a(117) - a(118) - 2 * a(119) - a(120) - a(123) - 2 * a(124) - a(125)
a( 83) =  504 - a(117) - a(118) - a(119) - a(122) - 2 * a(123) - a(124)
a( 82) = -126 - a(117) + 2 * a(119) + a(120) - a(122) + a(124) + a(125)
a( 81) = -756 + a(117) + 2 * a(118) + 2 * a(119) + 2 * a(120) + a(122) + 2 * a(123) + 2 * a(124) + a(125)
a( 80) =  504 - a(117) - a(118) - 2 * a(122) - 2 * a(123) - a(124)
a( 79) = -441 + a(118) + a(119) + a(120) + a(122) + a(123) + 2 * a(124) + a(125)
a( 78) = -441 + a(117) + a(118) + a(119) + a(122) + 3 * a(123) + a(124)
a( 77) =  189 - a(119) - a(120) + a(122) - a(125)
a( 76) =  504 - a(118) - a(119) - a(122) - 2 * a(123) - 2 * a(124)
a( 75) =  693 - a(118) - a(119) - 2 * a(122) - 3 * a(123) - 2 * a(124) - a(125)
a( 74) =   63 - a(119) - a(120) + a(122) + a(123)
a( 73) = -567 + a(117) + a(118) + a(119) + 2 * a(122) + 3 * a(123) + 2 * a(124)
a( 72) = -252 + a(118) + a(119) + a(120) + a(123) + a(124)
a( 71) =  378 - a(117) - a(118) - a(122) - 2 * a(123) - a(124) + a(125)
a( 70) = -567 + a(118) + 2 * a(119) + a(120) + a(122) + 2 * a(123) + 2 * a(124) + a(125)
a( 69) = -252 - a(117) + a(118) + 2 * a(119) + 2 * a(120) - a(122) + a(124) + a(125)
a( 68) =  378 - a(118) - a(122) - 2 * a(123) - a(124)
a( 67) =  693 - a(118) - 3 * a(119) - 2 * a(120) - a(123) - 2 * a(124) - a(125)
a( 66) =   63 + a(117) - a(119) - a(120) + a(122) + a(123) - a(125)
a( 65) =  378 - a(118) - 2 * a(119) - 2 * a(120) + a(122) - a(124)
a( 64) =  693 + a(117) - a(118) - 3 * a(119) - 2 * a(120) - a(123) - 2 * a(124) - 2 * a(125)

a( 63) =  63
a( 62) = 126 - a(64)
a( 61) = 126 - a(65)
a( 60) = 126 - a(66)
a( 59) = 126 - a(67)
a( 58) = 126 - a(68)
a( 57) = 126 - a(69)
a( 56) = 126 - a(70)
a( 55) = 126 - a(71)
a( 54) = 126 - a(72)
a( 53) = 126 - a(73)
a( 52) = 126 - a(74)
a( 51) = 126 - a(75)
a( 50) = 126 - a(76)
a( 49) = 126 - a(77)

a(48) = 126 - a(78)
a(47) = 126 - a(79)
a(46) = 126 - a(80)
a(45) = 126 - a(81)
a(44) = 126 - a(82)
a(43) = 126 - a(83)
a(42) = 126 - a(84)
a(41) = 126 - a(85)
a(40) = 126 - a(86)
a(39) = 126 - a(87)
a(38) = 126 - a(88)
a(37) = 126 - a(89)
a(36) = 126 - a(90)
a(35) = 126 - a(91)
a(34) = 126 - a(92)
a(33) = 126 - a(93)

a(32) = 126 - a(94)
a(31) = 126 - a(95)
a(30) = 126 - a(96)
a(29) = 126 - a(97)
a(28) = 126 - a(98)
a(27) = 126 - a(99)
a(26) = 126 - a(100)
a(25) = 126 - a(101)
a(24) = 126 - a(102)
a(23) = 126 - a(103)
a(22) = 126 - a(104)
a(21) = 126 - a(105)
a(20) = 126 - a(106)
a(19) = 126 - a(107)
a(18) = 126 - a(108)
a(17) = 126 - a(109)

a(16) = 126 - a(110)
a(15) = 126 - a(111)
a(14) = 126 - a(112)
a(13) = 126 - a(113)
a(12) = 126 - a(114)
a(11) = 126 - a(115)
a(10) = 126 - a(116)
a( 9) = 126 - a(117)
a( 8) = 126 - a(118)
a( 7) = 126 - a(119)
a( 6) = 126 - a(120)
a( 5) = 126 - a(121)
a( 4) = 126 - a(122)
a( 3) = 126 - a(123)
a( 2) = 126 - a(124)
a( 1) = 126 - a(125)

The linear equations shown above, are ready to be solved, for the magic constant 315.

The solutions can be obtained by guessing a(117) ... a(120) and a(122) ... a(125) and filling out these guesses in the abovementioned equations.

For distinct integers also following relations should be applied:

0 < a(i) =< 125       for i = 1 ... 116, 121
a(i) ≠ a(j)           for i ≠ j

which have been incorporated in an optimized guessing routine (MgcCube5d).

Subject guessing routine produced - with careful selected sets of the variables a(125) and a(124) (note 47) - Semi Pan Magic Cubes, which are shown in Attachment 4.7.1.

The eight cubes which have been obtained with the 3 Grid Method are shown in Attachment 4.7.2.

A more efficient method to generate Semi Pan Magic Cubes, based on the equations deducted above, will be discussed in Section 5.3.


Vorige Pagina Volgende Pagina Index About the Author