Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
7.6 Analytic Solution, Miscellaneous Inlays
Magic Squares of the 5th order with Inlays, as described and constructed in Section 5.6, can be used as Center Squares for 7th order Bordered Magic Squares.
Attachment 7.7.1 contains for the first occurring border, one example of each of the possible Bordered Magic Squares for Center Squares with Diamond or Square Inlay.
7.6.2 Associated, Diamond Inlays of Order 3 and 4
The 3th and 4th order Diamond Inlays of a 7th order Magic Square can be described by following equations:
which can be added to the equations describing an Associated Square of the 7th order.
a(46) = 100 - a(40) - a(34) - a(28) a(45) = 25 + a(47) - 2 * a(27) + a(26) - a(20) + a(46) + a(40) - a(28) a(43) = 175 - a(44) - a(45) - a(47) - a(48) - a(49) - a(46) a(39) = 75 - a(33) - a(27) a(38) = a(20) - a(46) + a(28) a(37) = - 75 + a(41) - a(44) + a(48) + a(27) + a(20) + a(34) a(36) = 175 - 2 * a(41) - a(42) + a(44) - a(48) + a(33) - 2 * a(20) + a(46) - a(40) - a(34) - a(28) a(35) = (425 - 2 * a(41) - 2 * a(42) - 2 * a(47) - 2 * a(48) - 2 * a(49) - a(33) + 2 * a(20) - 2 * a(46) + - 2 * a(40) - 2 * a(34)) / 2 a(32) = 100 - a(26) - 2 * a(20) + a(46) - a(28) a(29) = 75 - a(35) - 2 * a(33) - 2 * a(27) + a(26) + 3 * a(20) - a(46) - a(34) + a(28) a(26) = 100 - a(20) - a(34) - a(28) a(25) = 25 a(19) = 100 - a(33) - 2 * a(27)
with the following independent variables:
An optimized guessing routine (MgcSqr7j1) produced, with
2400 Magic Squares with Diamond Inlays of order 3 and 4 within 1,55 hours, of which the first 44 are shown in Attachment 7.7.2.
An alternative method to generate Associated Magic Squares with order 3 and 4 Diamond Inlays will be discussed in
Section 18.3.2.
7.6.3 Associated, Square Inlays of Order 3 and 4
The 3th and 4th order Square Inlays of a 7th order Magic Square can be described by following equations:
which can be added to the equations describing a Magic Square of the 7th order, and result in following set of linear equations: a(44) = 175 - a(46) - a(48) - a(43) - a(45) - a(47) - a(49) a(43) = 100 - a(45) - a(47) - a(49) a(37) = 75 - a(39) - a(41) a(36) = 100 - a(38) - a(40) - a(42) a(33) = 50 - a(35) + 0.5 * a(43) + 0.5 * a(45) - 0.5 * a(47) - 0.5 * a(49) a(32) = 150 - 2 * a(34) - a(46) - 2 * a(48) a(31) = a(33) - a(45) + a(47) a(30) = 75 - a(32) - a(34) a(29) = 100 - 2 * a(33) - a(35) + a(45) - a(47) a(28) = 125 - a(38) - a(40) - 2 * a(42) a(27) = 100 - a(39) - 2 * a(41) a(26) = 25 + a(38) - a(40) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j2) produced, with both
the 3th and 4th order Square Inlays constant,
2560 Associated Magic Squares within 130 seconds, of which the first 48 are shown in Attachment 7.7.3.
7.6.4 Ultra Magic, Order 3 Concentric Square and Square Inlay (1)
When the equations describing a 3th order Concentric Square and a 3th order Square Inlay are added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), following set of linear equations will result: a(46) = 175 - 2 * a(48) - a(49) - a(32) - a(33) - a(41) a(44) =-150 + a(45) + a(47) + a(48) + a(49) + a(33) + a(39) + a(41) a(43) = 150 - 2 * a(45) - 2 * a(47) - a(49) + a(32) - a(39) a(42) =(-25 + 2 * a(45) + a(32) + 2 * a(33) - 2 * a(41))/2 a(40) =(125 - 2 * a(47) - a(39))/2 a(38) = a(40) - a(45) + a(47) a(37) = 75 - a(39) - a(41) a(36) = -25 - a(42) + a(45) + a(47) + a(39) a(35) = 150 - a(42) - a(47) - a(48) - a(49) - a(41) a(34) = 75 - a(35) - a(40) - a(47) + a(41) a(31) = 75 - a(32) - a(33) a(30) = -75 - a(36) + a(38) + a(45) + a(47) + a(48) - a(33) + a(39) + a(41) a(29) = 100 - a(30) - a(34) - a(35) a(28) = 100 - 2 * a(45) - a(49) - a(33) + a(41) a(27) = 100 - a(39) - 2 * a(41) a(26) = 100 - a(32) - 2 * a(33) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j3), produced the 8 possible Ultra Magic Squares with Order 3 Concentric Square and Square Inlay within 15,5 hours, which are shown in Attachment 7.7.4.
7.6.5 Ultra Magic, Order 3 Concentric Square and Square Inlay (2)
Another possible 3th order Square Inlay (Type 2) can be defined by following equations:
which can be added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), and result in following set of linear equations: a(45) = (175 - 2 * a(48) - a(32) - 2 * a(33)) / 2 a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(40) = (225 - 2 * a(48) - 2 * a(32) - 2 * a(33) - a(46)) / 2 a(39) = 75 - a(41) - 2 * a(47) + a(32) + a(33) - a(49) a(38) = -175 + a(40) + a(45) + a(47) + 2 * a(48) + a(32) + 2 * a(33) a(37) = -175 + a(41) + 2 * a(47) + 2 * a(48) + a(46) + 2 * a(49) a(36) = 225 - a(41) - a(42) - a(45) - a(47) - 2 * a(48) - a(33) - a(49) a(35) = 150 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = 75 - a(40) - a(42) - a(48) + a(49) a(31) = 75 - a(32) - a(33) a(30) = -225 + a(40) + a(41) + a(42) + a(45) + a(47) + 3 * a(48) + a(32) + a(33) a(29) = - 75 + a(42) + a(45) + a(48) + a(33) a(28) = 100 - a(46) - 2 * a(49) a(27) = -125 + a(41) + 2 * a(42) + 2 * a(47) + 2 * a(48) - a(32) - a(33) + a(49) a(26) = 100 - a(32) - 2 * a(33) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j4), produced the 8 possible Ultra Magic Squares with Order 3 Concentric Square and Square Inlay within 495 seconds, which are shown in Attachment 7.7.5.
7.6.6 Ultra Magic, Order 3 Square Inlays
When the equations of each of the two described order 3 Square Inlays are added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), following set of linear equations will result: a(47) = (250 - 2 * a(48) - a(39) - 2 * a(41) - a(46) - 2 * a(49))/2 a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(40) = (25 - 2 * a(42) + a(46) + 2 * a(49))/2 a(37) = 75 - a(39) - a(41) a(36) = 100 - a(38) - a(40) - a(42) a(35) = 150 - a(42) - a(47) - a(48) - a(41) - a(49) a(34) = 75 - a(40) - a(42) - a(48) + a(49) a(33) = a(38) - a(40) - a(45) - a(47) + a(41) + a(46) + a(49) a(32) = 25 - a(38) + a(40) + 2 * a(42) + a(45) + a(47) - 2 * a(46) - 2 * a(49) a(31) = -100 - a(38) + a(40) - a(45) + a(47) + 2 * a(48) + a(41) + a(46) + a(49) a(30) = - 50 + a(40) + a(42) + a(45) + a(47) + a(48) - a(46) - a(49) a(29) = 75 + a(38) - a(40) - a(42) - a(47) - a(48) - a(41) + a(46) + a(49) a(28) = 100 - a(46) - 2 * a(49) a(27) = 100 - a(39) - 2 * a(41) a(26) = 200 - a(38) - a(40) - 2 * a(42) + a(45) - a(47) - a(39) - 2 * a(41) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j5), produced the 8 possible Ultra Magic Squares with Order 3 Square Inlays within 37,5 minutes, which are shown in Attachment 7.7.6.
7.6.7 Ultra Magic, Order 3 Concentric Square and Diamond Inlay
When the equations describing a 3th order Concentric Square and a 3th order Diamond Inlay are added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), following set of linear equations will result: a(43) = 175 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(42) = (-75 + 2 * a(45) + a(33) + 2 * a(39))/2 a(41) = 150 + a(44) - a(45) - a(47) - a(48) - a(49) - a(33) - a(39) a(40) = (175 - a(44) + a(45) - a(46) - a(47) - a(48) - 2 * a(39))/2 a(38) = a(40) - a(45) + a(47) a(37) = -125 + a(46) + 2 * a(48) + a(49) + a(33) + a(39) a(36) = - 25 - a(42) + a(45) + a(47) + a(39) a(35) = 75 + a(42) - a(44) - a(45) - a(39) a(34) = - 50 - a(40) + a(42) + a(48) + a(49) + a(33) a(32) = - 25 + 2 * a(39) a(31) = 100 - a(33) - 2 * a(39) a(30) = 200 - a(40) - a(42) + a(45) - a(46) - a(47) - a(48) - a(49) - a(33) - a(39) a(29) = 50 - a(42) + a(45) - a(48) a(28) = 300 - 2 * a(45) - a(46) - 2 * a(48) - 2 * a(49) - 2 * a(33) - 2 * a(39) a(27) = 75 - a(33) - a(39) a(26) = 125 - 2 * a(33) - 2 * a(39) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j6), produced 16 Ultra Magic Squares with Order 3 Concentric Square and Diamond Inlay within 10,5 hours, which are shown in Attachment 7.7.7.
7.6.8 Ultra Magic, Order 3 Square and Diamond Inlay (1)
When the equations describing a 3th order Square Inlay (Type 1) and a 3th order Diamond Inlay are added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), following set of linear equations will result: a(44) = 50 + a(45) - a(46) + a(47) - a(48) - a(39) a(43) = 125 - 2 * a(45) - 2 * a(47) - a(49) + a(39) a(40) = (475 - 2 * a(42) + 2 * a(45) - 2 * a(46) - 2*a(47) - 4*a(48) - 2*a(49) - 3*a(39) - 4*a(41))/2 a(38) = (25 - 2 * a(42) + a(39) + 2 * a(41))/2 a(37) = 75 - a(39) - a(41) a(36) = -150 + a(42) - a(45) + a(46) + a(47) + 2 * a(48) + a(49) + a(39) + a(41) a(35) = 150 - a(42) - a(47) - a(48) - a(49) - a(41) a(34) = 50 - a(38) - a(42) + a(45) - a(46) + a(47) - a(48) + a(41) a(33) = - 25 + 2 * a(41) a(32) = -150 + 2 * a(42) - 2 * a(45) + a(46) + 2 * a(48) + a(49) + 2 * a(39) + a(41) a(31) = 125 - 2 * a(39) - 2 * a(41) a(30) = - 25 + a(38) + a(42) + a(48) - a(41) a(29) = 50 - a(42) + a(45) - a(48) a(28) = -100 - 2 * a(45) + a(46) + 2 * a(48) + 2 * a(39) + 2 * a(41) a(27) = 100 - a(39) - 2 * a(41) a(26) = - 50 + a(46) + 2 * a(48) + a(49) - a(41) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j7), produced 16 Ultra Magic Squares with Order 3 Square and Diamond Inlay within 1,5 hours, which are shown in Attachment 7.7.8.
7.6.9 Ultra Magic, Order 3 Square and Diamond Inlay (2)
When the equations describing a 3th order Square Inlay (Type 2) and a 3th order Diamond Inlay are added to the equations describing an Ultra Magic Square of the 7th order (Section 7.4), following set of linear equations will result: a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(41) = 150 - a(45) - 2 * a(47) - a(48) - a(49) a(40) = (200 - 2 * a(42) + 2 * a(45) - 2 * a(48) - a(33) - 2 * a(39) - a(46))/2 a(37) = - 25 - a(45) + a(48) + a(46) + a(49) a(38) = 100 - a(40) - 2 * a(42) + 2 * a(45) + a(47) - a(48) - a(39) - a(46) a(36) = - 50 + a(42) + a(47) + a(48) a(35) = - a(42) + a(45) + a(47) a(34) = 75 - a(40) - a(42) - a(48) + a(49) a(32) = - 50 + 2 * a(42) - a(45) + a(48) + a(39) a(31) = 100 - a(33) - 2 * a(39) a(30) = a(40) + a(42) - a(45) - a(47) + a(48) + a(39) - a(49) a(29) = 50 - a(42) + a(45) - a(48) a(28) = 100 - a(46) - 2 * a(49) a(27) = 75 - a(33) - a(39) a(26) = 25 + a(45) + a(48) - a(33) - a(39) a(25) = 25
with the following independent variables:
An optimized guessing routine (MgcSqr7j8), produced 80 Ultra Magic Squares with Order 3 Square and Diamond Inlay within 9,5 hours, which are shown in Attachment 7.7.9.
The linear equations deducted above, have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable 7th order Magic Squares (wrong solutions are obvious).
|
Index | About the Author |