Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
P1 (Plus Magic)
o o o o o o o o o o o o o o o o o o o o o o o o o P2
o o o o o o o o o o o o o o o o o o o o o o o o o P3 (Diamond Magic)
o o o o o o o o o o o o o o o o o o o o o o o o o P4
o o o o o o o o o o o o o o o o o o o o o o o o o P5
o o o o o o o o o o o o o o o o o o o o o o o o o P6 (Cross Magic)
o o o o o o o o o o o o o o o o o o o o o o o o o P7
o o o o o o o o o o o o o o o o o o o o o o o o o
further referred to as Magic Pattern P1 thru P7.
9.8.2 Equations Quadrant Magic Patterns
The quadrant properties defined in Section 9.8.1 above can be described by following linear equations:
a( 3) + a(12) + a(21) + a(30) + a(39) + a(19) + a(20) + a(22) + a(23) = s1 P1 Magic
which can be combined with the equations describing miscellaneous types of order 9 Magic Squares.
Quadrant P1 Magic Squares, with order 4 and order 5 Square Inlays, can be obtained by means of a transformation as described in Section 9.7.4 and illustrated below: |
Composed
a1 a2 a3 a4 b1 b2 b3 b4 b5 a5 a6 a7 a8 b6 b7 b8 b9 b10 a9 a10 a11 a12 b11 b12 b13 b14 b15 a13 a14 a15 a16 b16 b17 b18 b19 b20 c1 c2 c3 c4 d1 d2 d3 d4 d5 c5 c6 c7 c8 d6 d7 d8 d9 d10 c9 c10 c11 c12 d11 d12 d13 d14 d15 c13 c14 c15 c16 d16 d17 d18 d19 d20 c17 c18 c19 c20 d21 d22 d23 d24 d25 = > Quadrant P1 Magic
d1 c1 d2 c2 d3 c3 d4 c4 d5 b1 a1 b2 a2 b3 a3 b4 a4 b5 d6 c5 d7 c6 d8 c7 d9 c8 d10 b6 a5 b7 a6 b8 a7 b9 a8 b10 d11 c9 d12 c10 d13 c11 d14 c12 d15 b11 a9 b12 a10 b13 a11 b14 a12 b15 d16 c13 d17 c14 d18 c15 d19 c16 d20 b16 a13 b17 a14 b18 a15 b19 a16 b20 d21 c17 d22 c18 d23 c19 d24 c20 d25
The (Semi) Magic Square shown at the left side above is composed out of:
The transformed square shown at the right side above is a Quadrant P1 Magic Square as:
d2 +
d6 +
d7 +
d8 + d12 +
b2 +
b7 +
c5 +
c6 = s9
Attachment 9.8.33 shows a few Quadrant P1 Magic Squares, with symmetrical diagonals, which could be constructed based on the method described above.
All 3 x 3 Compact Magic Squares, of which a few sub collections have been discussed in
Section 9.4 and
Section 9.5 are Quadrant P2 Magic.
a( 1) + a( 3) + a( 5) + a(19) + a(21) + a(23) + a(37) + a(39) + a(41) = s1
Which are the defining equations for Quadrant P5 Magic Squares.
Consequently all (3 x 3) Compact Magic Squares are Quadrant (P2, P5) Magic.
Based on the equations defining the Quadrant P3 and P4 properties:
a( 3) + a(11) + a(13) + a(19) + a(21) + a(23) + a(29) + a(31) + a(39) = s1 P3 Magic
Sudoku Comparable Quadrant (P2, P3, P4, P5) Pan Magic Squares can be filtered from the
1152 Sudoku Comparable Compact Associated Pan Magic Squares as deducted in Section 9.5.3.
Attachment 9.8.51 shows the 64 Sudoku Comparable Quadrant (P2, P3, P4, P5) Pan Magic Square as filtered from
subject collection (ref. Attachment 9.6.11).
Routine CnstrSqrs94, in which the relations ensuring unique magic squares:
Associated Quadrant P6 Magic Squares, with order 4 and order 5 Square Inlays, can be obtained by means of a transformation as described in Section 9.7.4 and illustrated below: |
Composed
a1 a2 a3 a4 b1 b2 b3 b4 b5 a5 a6 a7 a8 b6 b7 b8 b9 b10 a9 a10 a11 a12 b11 b12 b13 b14 b15 a13 a14 a15 a16 b16 b17 b18 b19 b20 c1 c2 c3 c4 d1 d2 d3 d4 d5 c5 c6 c7 c8 d6 d7 d8 d9 d10 c9 c10 c11 c12 d11 d12 d13 d14 d15 c13 c14 c15 c16 d16 d17 d18 d19 d20 c17 c18 c19 c20 d21 d22 d23 d24 d25 = > Quadrant P6 Magic
d1 c1 d2 c2 d3 c3 d4 c4 d5 b1 a1 b2 a2 b3 a3 b4 a4 b5 d6 c5 d7 c6 d8 c7 d9 c8 d10 b6 a5 b7 a6 b8 a7 b9 a8 b10 d11 c9 d12 c10 d13 c11 d14 c12 d15 b11 a9 b12 a10 b13 a11 b14 a12 b15 d16 c13 d17 c14 d18 c15 d19 c16 d20 b16 a13 b17 a14 b18 a15 b19 a16 b20 d21 c17 d22 c18 d23 c19 d24 c20 d25
The (Semi) Magic Square shown at the left side above is composed out of:
The transformed square shown at the right side above is an Associated Quadrant P6 Magic Square as:
a1 +
a2 +
a5 +
a6 +
d1 +
d3 +
d7 + d11 + d13 = s9
Attachment 9.8.61 shows a few Associated Quadrant P6 Magic Squares which could be constructed based on the method described above.
Also Quadrant (P1, P6) Magic Squares, with order 4 and order 5 Square Inlays, can be obtained with the method described above: |
Composed
a1 a2 a3 a4 b1 b2 b3 b4 b5 a5 a6 a7 a8 b6 b7 b8 b9 b10 a9 a10 a11 a12 b11 b12 b13 b14 b15 a13 a14 a15 a16 b16 b17 b18 b19 b20 c1 c2 c3 c4 d1 d2 d3 d4 d5 c5 c6 c7 c8 d6 d7 d8 d9 d10 c9 c10 c11 c12 d11 d12 d13 d14 d15 c13 c14 c15 c16 d16 d17 d18 d19 d20 c17 c18 c19 c20 d21 d22 d23 d24 d25 = > Quadrant (P1, P6) Magic
d1 c1 d2 c2 d3 c3 d4 c4 d5 b1 a1 b2 a2 b3 a3 b4 a4 b5 d6 c5 d7 c6 d8 c7 d9 c8 d10 b6 a5 b7 a6 b8 a7 b9 a8 b10 d11 c9 d12 c10 d13 c11 d14 c12 d15 b11 a9 b12 a10 b13 a11 b14 a12 b15 d16 c13 d17 c14 d18 c15 d19 c16 d20 b16 a13 b17 a14 b18 a15 b19 a16 b20 d21 c17 d22 c18 d23 c19 d24 c20 d25
The (Semi) Magic Square shown at the left side above should for this case be composed out of:
The transformed square shown at the right side above is a Quadrant (P1, P6) Magic Square as:
d2 +
d6 +
d7 +
d8 + d12 +
b2 +
b7 +
c5 +
c6 = s9 P1 Magic
Attachment 9.8.62 shows a few Quadrant (P1, P6) Magic Squares, with symmetrical diagonals, which could be constructed based on the method described above.
When the equations defining the Quadrant P7 property:
a( 2) + a( 4) + a(10) + a(14) + a(21) + a(28) + a(32) + a(38) + a(40) = s1 P7 Magic are added to the defining equations of order 9 Associated Compact Magic Squares, the resulting Quadrant P7 Magic Square is described by following equations: a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(44) = s1/9 + a(74) - a(80) a(69) = - s1 + a(72) + a(74) + a(75) + 2 * a(76) + a(77) + a(79) + a(80) + 2 * a(81) a(66) = - s1 + a(72) + a(74) + a(76) + a(77) + a(78) + 2 * a(79) + a(80) + 2 * a(81) a(70) = 12*s1/9 - a(71) - a(72) - a(76) - a(77) - a(78) - 2 * a(79) - 2 * a(80) - 2 * a(81) a(68) = a(71) - a(74) + a(80) a(67) = 12*s1/9 - a(71) - a(72) - a(75) - 2 * a(76) - a(77) - a(79) - 2 * a(80) - 2 * a(81) a(65) = a(71) - 2 * a(74) + 2 * a(80) a(64) = 3*s1/9 - a(71) - a(72) + a(74) - a(80) a(60) = s1 + a(63) - a(74) - a(75) - 2 * a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(57) = s1 + a(63) - a(74) - a(75) - a(76) - a(77) - a(78) - 2 * a(79) - a(80) - a(81) a(61) = - 3*s1/9 - a(62) - a(63) + a(76) + a(77) + a(78) + a(79) + a(80) + a(81) a(59) = a(62) + a(74) - a(77) a(58) = - 3*s1/9 - a(62) - a(63) + a(75) + a(76) + a(77) + a(79) + a(80) + a(81) a(56) = a(62) + a(74) - a(80) a(55) = - 3*s1/9 - a(62) - a(63) + a(75) + a(76) + a(77) + a(78) + a(79) + a(80) a(54) = - s1/9 - 2 * a(62) - 3 * a(63) - a(72) + 2 * a(76) + 2 * a(77) + a(78) + a(79) + a(80) + a(81) a(53) = - 4*s1/9 + a(62) - a(71) + 2 * a(74) + 2 * a(75) - a(77) + 2 * a(79) a(52) = 5*s1/9 + a(62) + 3*a(63) + a(71) + a(72) - 2*a(74) - 2*a(75) - 2*a(76) - a(77) - a(78) - 2*a(79) a(51) = - s1/9 - 2 * a(62) - 3 * a(63) - a(72) + 2 * a(76) + 2*a(77) + 2*a(78) + a(79) + a(80) a(50) = - 4*s1/9 + a(62) - a(71) + 2 * a(74) + 2 * a(75) + 2 * a(79) - a(80) a(49) = 5*s1/9 + a(62) + 3*a(63) + a(71) + a(72) - 2*a(74) - 2*a(75) - a(76) - a(77) - a(78) - 3*a(79) a(48) = - s1/9 - 2 * a(62) - 3 * a(63) - a(72) + a(75) + 2 * a(76) + 2 * a(77) + a(78) + a(79) + a(80) a(47) = - 4*s1/9 + a(62) - a(71) + 3 * a(74) + 2 * a(75) - a(77) + 2 * a(79) - a(80) a(46) = 14*s1/9 + a(62) + 3*a(63) + a(71) + a(72) - 3*a(74) - 3*a(75) - 3*a(76) + - 2*a(77) - 2*a(78) - 4*a(79) - a(80) - a(81) a(45) = 25*s1/9 + 2*a(62) + 4*a(63) - 3*a(74) - 3*a(75) - 5*a(76) - 4*a(77) + - 3*a(78) - 5*a(79) - 3*a(80) - 4*a(81) a(43) = -14*s1/9 - 2*a(62) - 4*a(63) + 2*a(74) + 3*a(75) + 4*a(76) + 3*a(77) + + 2*a(78) + 3*a(79) + 2*a(80) + 2*a(81) a(42) = 16*s1/9 + 2*a(62) + 4*a(63) - 2*a(74) - 2*a(75) - 3*a(76) - 3*a(77) + - 3*a(78) - 4*a(79) - 2*a(80) - 2*a(81) a(41) = s1/9
From the equations shown above it can be deducted that:
a( 2) + a( 4) + a(10) + a(14) + a(21) + a(28) + a(32) + a(38) + a(40) = s1
Which are the defining equations for Quadrant P1 Magic Squares.
Consequently all Quadrant P7 Associated Compact Magic Squares are Quadrant (P1, P7) Magic.
Attachment 9.8.72 shows a few Associated Compact Quadrant (P1, P2, P5, P7) Magic Squares
(ref. MgcSqr97a).
(Non Consecutive Integers)
When the equations defining the seven quadrant magic patterns (P1 ... P7), as listed in Section 9.8.2 above, are added to the equations defining order 9 Associated Magic Squares, the resulting Quadrant Multi Magic Square is described by following equations: a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(64) = s1 - a(65) - a(66) - a(67) - a(68) - a(69) - a(70) - a(71) - a(72) a(61) = (- 37*s1/9 + 6*a(74) + 6*a(75) + 6*a(76) - 6*a(77) + 10*a(78) + 10*a(79) + 10*a(80) + 2*a(81))/7 a(60) = ( 76*s1/9 - 14*a(62) - 7*a(63) - 11*a(74) - 11*a(75) - 11*a(76) + 11*a(77) + - 9*a(78) - 2*a(79) - 9*a(80) + a(81))/14 a(57) = (- 19*s1/9 + 8*a(74) + 8*a(75) + 8*a(76) - 8*a(77) + 4*a(78) + 4*a(79) + 4*a(80) - 2*a(81))/7 a(56) = ( 8*s1/9 - 14*a(58) + 14*a(59) + 7*a(63) - 3*a(74) + 11*a(75) - 3*a(76) + + 3*a(77) - 5*a(78) + 2*a(79) - 5*a(80) - a(81)) /14 a(55) = ( 77*s1/9 - 14*a(59) - 7*a(63) - 7*a(74) - 14*a(75) - 7*a(76) + 7*a(77) + - 7*a(78) - 14*a(79) - 7*a(80))/7 a(54) = (- 39*s1/9 - 7*a(63) - 7*a(72) + 12*a(74) + 12*a(75) + 12*a(76) - 12*a(77) + + 13*a(78) + 13*a(79) + 13*a(80) - 3*a(81))/7 a(52) = ( 24*s1/9 + 7*a(63) - 14*a(70) + 5*a(74) + 5*a(75) + 5*a(76) - 5*a(77) + - a(78) - 8*a(79) - a(80) - 3*a(81))/14 a(51) = ( 50*s1/9 - 7*a(53) - 7*a(69) - 7*a(71) - 3*a(74) - 3*a(75) - 3*a(76) + + 3*a(77) - 5*a(78) - 5*a(79) - 5*a(80) - a(81))/7 a(50) = (- 84*s1/9 - 7*a(59) - 7*a(68) + 28*a(73) + 49*a(77) + 28*a(81))/7 a(48) = ( 74*s1/9 - 14*a(59) - 7*a(63) - 14*a(66) - 5*a(74) - 19*a(75) - 5*a(76) + + 5*a(77) + a(78) - 6*a(79) + a(80) + 3*a(81))/14 a(47) = ( 41*s1/9 - 7*a(49) - 7*a(65) - 7*a(67) - 4*a(74) - 4*a(75) - 4*a(76) + + 4*a(77) - 2*a(78) - 2*a(79) - 2*a(80) + a(81))/7 a(46) = (-143*s1/9 + 14*a(59) + 7*a(63) - 7*a(64) + 23*a(74) + 30*a(75) + 23*a(76) + - 16*a(77) + 22*a(78) + 29*a(79) + 22*a(80) + 3*a(81))/7 a(45) = ( 43*s1/9 - 3*a(74) - 3*a(75) - 3*a(76) - 4*a(77) - 5*a(78) - 5*a(79) + - 5*a(80) - 8*a(81))/7 a(44) = ( 104*s1/9 - 14*a(49) - 14*a(53) - 14*a(58) + 14*a(59) - 14*a(62) + 7*a(63) - 14*a(67) + - 14*a(71) + 3*a(74) + 3*a(75) - 11*a(76) + 11*a(77) - 9*a(78) - 2*a(79) - 23*a(80) + a(81))/14 a(43) = ( 50*s1/9 - 7*a(59) - 7*a(63) - 3*a(74) - 3*a(75) - 3*a(76) + 3*a(77) + - 5*a(78) - 12*a(79) - 5*a(80) - a(81))/7 a(42) = (-162*s1/9 + 14*a(49) + 14*a(53) + 14*a(58) + 14*a(62) + 7*a(63) + 14*a(67) + + 14*a(71) + 17*a(74) + 17*a(75) + 31*a(76) - 17*a(77) + 5*a(78) + 12*a(79) + 19*a(80) + a(81))/14 a(41) = s1/9
which can be solved for Magic Sums s1 whch are a multiple of 63 (= 7 * 9).
The minimum possible Magic Sum s1 = 378 occurs for the range {i} = {1 ... 83}.
The obtained results regarding the miscellaneous types of order 9 Quadrant Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
P1
Order 4 and 5 Square Inlays
-
P2, P5
Associated, Compact Pan Magic
P2, P3, P4, P5
Associated, Compact Pan Magic
P6
Associated, Square Inlays
-
P1, P6
Order 4 and 5 Square Inlays
-
P1, P2, P5, P7
Associated, Compact
P1 ... P7 (multi)
Associated
Comparable routines as listed above, can be used to generate alternative types of order 9 Magic Squares.
|
Index | About the Author |