List of VBA Subroutines
Reduction of Lineair Equations
(note 1):
Generation of Magic Squares (4 x 4):
MgcSqr3 | Magic Squares, 3 x 3, Magic Constant 15 |
MgcSqr4 | Magic Squares, 4 x 4, Magic Constant 34, All Diagonals |
MgcSqr4b1 | Magic Squares, 4 x 4, Magic Constant 34, Main Diagonals |
MgcSqr4b2 | Magic Squares, 4 x 4, Magic Constant 34, Associated |
MgcSqr4c | Magic Squares, 4 x 4, Magic Constant 130, All Diagonals |
MgcSqr4e | Magic Squares, 4 x 4, Magic Constant 130, Main Diagonals
Distinct Integers i1(1) ... i1(16)
|
Generation of Magic Squares (5 x 5):
MgcSqr5a1 | Magic Squares, 5 x 5, Magic Constant 65, All Diagonals |
MgcSqr5a2 | Magic Squares, 5 x 5, Magic Constant 65, Main Diagonals (a) |
MgcSqr5b2 | Magic Squares, 5 x 5, Magic Constant 65, Main Diagonals (b) |
MgcSqr5a3 | Magic Squares, 5 x 5, Magic Constant 125, All Diagonals Defined Integers |
MgcSqr5c | Magic Squares, 5 x 5, Magic Constant 65, Ultramagic Squares |
MgcSqr5d | Magic Squares, 5 x 5, Magic Constant 65, Concentric Squares |
MgcSqr5e | Magic Squares, 5 x 5, Magic Constant 65, Eccentric Squares |
MgcSqr5f | Magic Squares, 5 x 5, Magic Constant 65, Sudoku Comparable Method |
MgcSqr5g1 | Magic Squares, 5 x 5, Magic Constant 65, Diamond Inlay |
MgcSqr5g2 | Magic Squares, 5 x 5, Magic Constant 65, Diamond Inlay, Associated |
MgcSqr5g3 | Magic Squares, 5 x 5, Magic Constant 65, Diamond Inlay, Concentric |
MgcSqr5g4 | Magic Squares, 5 x 5, Magic Constant 65, Square Inlay
|
SudSqr5a | Sudoku Squares 5 x 5, Magic Constant 10, Sudoku Diagonals |
SudSqr5b | Sudoku Squares 5 x 5, Magic Constant 10, Non Sudoku Diagonals |
CnstrSqrs5a | Magic Squares, 5 x 5, Magic Constant 65, Based on Sudoku Squares |
CnstrSqrs5b | Magic Squares, 5 x 5, Magic Constant 315, Based on Sudoku Squares
|
Generation of Magic Squares (6 x 6)
General:
MgcSqr6a | Magic Squares, 6 x 6, Main Diagonals (a) |
MgcSqr6b | Magic Squares, 6 x 6, Main Diagonals (b) |
MgcSqr6c | Magic Squares, 6 x 6, Symmetrical Main Diagonals (a) |
MgcSqr6c2 | Magic Squares, 6 x 6, Symmetrical Main Diagonals (b) |
MgcSqr6d | Magic Squares, 6 x 6, Medjig Squares |
MgcSqr6e1 | Magic Squares, 6 x 6, Concentric Squares (1) |
MgcSqr6e2 | Magic Squares, 6 x 6, Concentric Squares (2) |
MgcSqr6f | Magic Squares, 6 x 6, Eccentric Squares |
MgcSqr674 | Magic Squares, 6 x 6, Inlaid Squares
|
MgcSqr6102 | Magic Squares, 6 x 6, Non Overl Rectangles 2 x 3 |
MgcSqr6103 | Magic Squares, 6 x 6, Rect Compact |
MgcSqr6104 | Magic Squares, 6 x 6, Rect Compact, Axial Symmetric
|
MgcSqr6112 | Magic Squares, 6 x 6, Axial Symmetric |
MgcSqr6113 | Magic Squares, 6 x 6, Row Symmetric (Type 1) |
MgcSqr6114 | Magic Squares, 6 x 6, Row Symmetric (Type 2) |
MgcSqr6116 | Magic Squares, 6 x 6, Symmetric (Type 3) |
MgcSqr6117 | Magic Squares, 6 x 6, Symmetric (Type 4) |
MgcSqr6118 | Magic Squares, 6 x 6, Symmetric (Type 5) |
MgcSqr6119 | Magic Squares, 6 x 6, Symmetric (Type 6) |
MgcSqr61110 | Magic Squares, 6 x 6, Symmetric (Type 7) |
MgcSqr61111 | Magic Squares, 6 x 6, Symmetric (Type 8) |
MgcSqr61112 | Magic Squares, 6 x 6, Symmetric (Type 9) |
MgcSqr61113 | Magic Squares, 6 x 6, Symmetric, Almost Associated |
MgcSqr61114 | Magic Squares, 6 x 6, Symmetric, Square of the Sun
|
MgcSqr62c | Magic Squares, 6 x 6, Bimagic Diagonals |
CnstrSqrs6 | Magic Squares, 6 x 6, Bimagic Columns
|
Generation of Magic Squares (6 x 6)
Non Consecutive Integers:
MgcSqr6g1 | Magic Squares, 6 x 6, Pan Magic (1) |
MgcSqr6g2 | Magic Squares, 6 x 6, Pan Magic (2) |
MgcSqr6g4 | Magic Squares, 6 x 6, Pan Magic (3) |
MgcSqr6g5 | Magic Squares, 6 x 6, Pan Magic (4) |
Priem6f | Magic Squares, 6 x 6, Ultra Magic (1) |
Priem6h | Magic Squares, 6 x 6, Ultra Magic (2)
|
MgcSqr6105 | Magic Squares, 6 x 6, Rect Compact, Row Symmetric (Type 2) |
MgcSqr6115 | Magic Squares, 6 x 6, Simple, Crosswise Symmetric
|
MgcSqr6122 | Magic Squares, 6 x 6, Pan Magic, Axial Symmetric |
MgcSqr6123 | Magic Squares, 6 x 6, Pan Magic, Row Symmetric (Type 1) |
MgcSqr6124 | Magic Squares, 6 x 6, Pan Magic, Row Symmetric (Type 2) |
MgcSqr6125 | Magic Squares, 6 x 6, Pan Magic, Crosswise Symmetric |
MgcSqr6127 | Magic Squares, 6 x 6, Pan Magic, Symmetric (Type 4)
|
CnstrSqrs6132 | Magic Squares, 6 x 6, Bimagic Rows and Columns |
CnstrSqrs6133 | Magic Squares, 6 x 6, Bimagic
|
Generation of Magic Squares (7 x 7)
MgcSqr7a | Magic Squares, 7 x 7, Magic Constant 175, Pan Magic |
Priem7c | Magic Squares, 7 x 7, Magic Constant 175, Ultra Magic |
MgcSqr7c | Magic Squares, 7 x 7, Magic Constant 175, Ultra Magic, Three Cell Paterns |
MgcSqr7d | Magic Squares, 7 x 7, Magic Constant 175, Concentric Squares |
MgcSqr7e | Magic Squares, 7 x 7, Magic Constant 175, Eccentric Squares |
MgcSqr7f | Magic Squares, 7 x 7, Magic Constant 175, Sum Key Variables 129
Filtered from collection {B} |
MgcSqr7j1 | Magic Squares, 7 x 7, Magic Constant 175, Diamond Inlays |
MgcSqr7j2 | Magic Squares, 7 x 7, Magic Constant 175, Square Inlays |
MgcSqr7j3 | Magic Squares, 7 x 7, Magic Constant 175, Concentric Square and Square Inlay (1) |
MgcSqr7j4 | Magic Squares, 7 x 7, Magic Constant 175, Concentric Square and Square Inlay (2) |
MgcSqr7j5 | Magic Squares, 7 x 7, Magic Constant 175, Square Inlays |
MgcSqr7j6 | Magic Squares, 7 x 7, Magic Constant 175, Concentric Square and Diamond Inlay |
MgcSqr7j7 | Magic Squares, 7 x 7, Magic Constant 175, Square and Diamond Inlay (1) |
MgcSqr7j8 | Magic Squares, 7 x 7, Magic Constant 175, Square and Diamond Inlay (2) |
MgcSqr7g1 | Magic Squares, 7 x 7, Magic Constant 175, Overlapping Sub Squares (1) |
MgcSqr7g2 | Magic Squares, 7 x 7, Magic Constant 175, Overlapping Sub Squares (2) |
MgcSqr7g3 | Magic Squares, 7 x 7, Magic Constant 175, Non Overlapping Sub Squares
|
SudSqr7a | Sudoku Squares 7 x 7, Magic Constant 21, Pan Magic |
SudSqr7b | Sudoku Squares 7 x 7, Magic Constant 21, Ultra Magic |
CnstrSqrs7a | Magic Squares, 7 x 7, Magic Constant 175, Based on Sudoku Squares (1) |
CnstrSqrs7b | Magic Squares, 7 x 7, Magic Constant 175, Based on Sudoku Squares (2)
|
Generation of Magic Squares (8 x 8)
General:
MgcSqr8a | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (1)
Matrix Operation |
MgcSqr8b1 | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (2)
Pan Magic Sub Squares |
MgcSqr8b2 | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (3)
Pan Magic Sub Squares, Magic Middle Squares |
MgcSqr8c1 | Magic Squares, 8 x 8, Magic Constant 260, Magic (1)
Pan Magic Sub Squares |
MgcSqr8d1 | Magic Squares, 8 x 8, Magic Constant 260, Magic (2)
Magic Sub Squares |
MgcSqr8d2 | Magic Squares, 8 x 8, Magic Constant 260, Magic (3)
Magic Sub Squares, Magic Middle Squares
|
MgcSqr8c2 | Magic Squares, 8 x 8, Magic Constant 260, Edward Falkener
Associated Magic Sub Squares |
MgcSqr825 | Magic Squares, 8 x 8, Magic Constant 260, L.S. Frierson
Pan Magic Sub Squares |
MgcSqr826 | Magic Squares, 8 x 8, Magic Constant 260, L.S. Frierson
Magic Sub Squares, Magic Middle Squares |
MgcSqr827 | Magic Squares, 8 x 8, Magic Constant 260, Harry A. Sayles
Pan Magic Center Square, Composed Border
|
MgcSqr8e | Magic Squares, 8 x 8, Medjig Squares |
MgcSqr8f1 | Magic Squares, 8 x 8, Franklin Squares |
MgcSqr8f2 | Magic Squares, 8 x 8, Franklin Squares
Barink Restrictions |
MgcSqr8g | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (4)
Franklin Properties 2 and 5 |
MgcSqr8h | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (5)
Pan Magic Sub Squares, Franklin Property 5 |
MgcSqr8g4 | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (6)
Pan Magic Sub Squares, Franklin Properties 3 and 5, Barink Restrictions |
MgcSqr8g5 | Magic Squares, 8 x 8, Magic Constant 260, Pan Magic (7)
Most Perfect (Compact and Complete)
|
MgcSqr8i | Magic Squares, 8 x 8, Magic Constant 260, Concentric Squares |
MgcSqr8j | Magic Squares, 8 x 8, Magic Constant 260, Eccentric Squares |
MgcSqr8k | Magic Squares, 8 x 8, Magic Constant 260, Inlaid Squares
|
Priem8e | Magic Squares, 8 x 8, Magic Constant 260, Ultra Magic Squares (1)
Compact |
Priem8d | Magic Squares, 8 x 8, Magic Constant 260, Ultra Magic Squares (2)
Non Overlapping Sub Squares 2 x 2, Half Rows, Half Columns |
Priem8f | Magic Squares, 8 x 8, Magic Constant 260, Ultra Magic Squares (3)
Rectangular Compact Compact (2 x 4)
|
Generation of Magic Squares (8 x 8)
Sudoku Comparable:
SudSqr8a | Sudoku Squares 8 x 8, Magic Constant 28, Pan Magic, Complete, Partly Rect Compact |
SudSqr8a1 | Sudoku Squares 8 x 8, Magic Constant 28, Miscellaneous Properties (1) |
SudSqr8a2 | Sudoku Squares 8 x 8, Magic Constant 28, Miscellaneous Properties (2) |
SudSqr8b1 | Sudoku Squares 8 x 8, Magic Constant 28, Miscellaneous Properties (3) |
SudSqr8b2 | Sudoku Squares 8 x 8, Magic Constant 28, Miscellaneous Properties (4) |
SudSqr8c | Octanary Squares 8 x 8, Magic Constant 28, Miscellaneous Properties (5) |
SudSqr8d | Sudoku Squares 8 x 8, Magic Constant 28, Pan Magic, Non Overl Sub Sqrs, Associated |
SudSqr8e | Sudoku Squares 8 x 8, Magic Constant 28, Pan Magic, Non Overl Sub Sqrs, Complete |
SudSqr8g | Sudoku Squares 8 x 8, Magic Constant 28, Pan Magic, Complete, Rect Compact
|
Quat867 | Quaternary Squares, 8 x 8, Magic Constant 12, Pan Magic, Associated |
Quat869 | Quaternary Squares, 8 x 8, Magic Constant 12, Pan Magic, Complete
|
CnstrSqrs8a | Magic Squares, 8 x 8, Magic Constant 260, Based on Sudoku Squares |
CnstrSqrs8b | Magic Squares, 8 x 8, Magic Constant 260, Based on Octanary Squares |
CnstrSqrs8c | Magic Squares, 8 x 8, Magic Constant 260, Based on Quaternary Squares
|
Generation of Magic Squares (9 x 9):
MgcSqr9b | Magic Squares, 9 x 9, Magic Constant 369, Pan Magic
Matrix Operation |
MgcSqr9c | Magic Squares, 9 x 9, Magic Constant 369, Ultra Magic
Filtered from collection {B} |
MgcSqr9d | Magic Squares, 9 x 9, Magic Constant 369, Concentric Squares |
MgcSqr9e | Magic Squares, 9 x 9, Magic Constant 369, Eccentric Squares |
MgcSqr9a1 | Magic Squares, 9 x 9, Magic Constant 369, Overlapping Sub Squares (1) |
MgcSqr9a2 | Magic Squares, 9 x 9, Magic Constant 369, Overlapping Sub Squares (2) |
MgcSqr9g | Magic Squares, 9 x 9, Magic Constant 369, Associated Compact Pan Magic |
MgcSqr9k | Magic Squares, 9 x 9, Magic Constant 369, Inlaid Magic Squares |
Priem9f3 | Magic Squares, 9 x 9, Magic Constant 369, Composed, Ass Crnr Sqrs |
Priem9f4 | Magic Squares, 9 x 9, Magic Constant 369, Associated, Diamond Inlays |
Priem9g1 | Magic Squares, 9 x 9, Magic Constant 369, Overlapping Sub Squares |
Priem9g2 | Magic Squares, 9 x 9, Magic Constant 369, Ultra Magic, Split Rows an Columns
|
SudSqr9a | Sudoku Squares, 9 x 9, Magic Constant 36, Associated Compact Pan Magic |
SudSqr9b | Sudoku Squares, 9 x 9, Magic Constant 36, Associated Magic
Each third-row and third-column summing to s1/3
|
Ternary9 | Ternary Squares 9 x 9, Magic Constant 9, Compact Pan Magic |
CnstrSqrs9a | Magic Squares, 9 x 9, Magic Constant 369, Based on Sudoku Squares |
CnstrSqrs9b | Sudoku Squares, 9 x 9, Magic Constant 36, Based on Ternary Squares
|
Generation of Magic Squares (10 x 10):
MgcSqr10a1 | Magic Squares, 10 x 10, Medjig Squares |
MgcSqr10a2 | Magic Squares, 10 x 10, Medjig Squares, Bimagic Main Diagonals |
MgcSqr10a3 | Magic Squares, 10 x 10, Medjig Squares, Bimagic Center Lines |
MgcSqr10b | Magic Squares, 10 x 10, Magic Constant 505, Concentric Squares |
MgcSqr10c | Magic Squares, 10 x 10, Magic Constant 505, Eccentric Squares |
MgcSqr10d | Magic Squares, 10 x 10, Magic Constant 2250, Most Perfect Magic Square |
MgcSqr10e | Magic Squares, 10 x 10, Magic Constant 3510, Ultra Magic, Compact
|
Priem10c2 | Magic Squares, 10 x 10, Magic Constant 505, Composed (1) |
Priem10c3 | Magic Squares, 10 x 10, Magic Constant 505, Composed (2) |
Priem10c4 | Magic Squares, 10 x 10, Magic Constant 505, Composed (3) |
Priem10c5 | Magic Squares, 10 x 10, Magic Constant 505, Composed (4) |
CntrCross10 | Magic Squares, 10 x 10, Magic Constant 505, Center Cross
|
Generation of Magic Squares (11 x 11):
Priem11a | Magic Squares, 11 x 11, Magic Constant 671, Borders |
Priem11e | Magic Squares, 11 x 11, Magic Constant 671, Composed Borders |
Priem11c | Magic Squares, 11 x 11, Magic Constant 671, Eccentric |
Priem11d | Magic Squares, 11 x 11, Magic Constant 671, Associated, Composed Border (1) |
Priem11f | Magic Squares, 11 x 11, Magic Constant 671, Associated, Composed Border (2) |
MgcSqr11k | Magic Squares, 11 x 11, Magic Constant 671, Square Inlays |
MgcSqr11 | Magic Squares, 11 x 11, Magic Constant 671, Overlapping Sub Squares (1) |
PriemE11 | Magic Squares, 11 x 11, Magic Constant 671, Overlapping Sub Squares (2) |
PriemG15 | Magic Squares, 15 x 15, Magic Constant 1695, Overlapping Sub Squares (2) |
Prime11c1 | Magic Squares, 11 x 11, Magic Constant 671, Associated Corner Squares
|
Generation of Magic Squares (Higher Order):
MgcSqr12a | Barink Squares, 12 x 12, Magic Constant 870, Pan Magic |
MgcSqr12b | Morris Squares, 12 x 12, Magic Constant 870, Pan Magic |
MgcSqr12c | Morris Squares, 12 x 12, Magic Constant 870, Most Perfect (1) |
MgcSqr12e | Magic Squares, 12 x 12, Magic Constant 870, Most Perfect (2) |
MgcSqr12d | Hendricks Squares 12 x 12, Magic Constant 870, Composed |
MgcSqr16a | Franklin Squares, 16 x 16, Magic Constant 2056, Bent Diagonals (1) |
MgcSqr16b | Franklin Squares, 16 x 16, Magic Constant 2056, Bent Diagonals (2)
Most Perfect Pan Magic Squares |
MgcSqr16c | Franklin Squares, 16 x 16, Magic Constant 2056, Bent Diagonals (3)
Most Perfect Pan Magic Squares, Barink Restrictions
|
|