22.0 Magic Squares, Higher Order, Composed
22.1 Introduction, 4 x 4 Sub Squares
In Section 8.9 a set of 4 Pan Magic Squares of the 4th order was found, each containing 16 different integers,
with magic sum s4 = 130:
A
4 |
5 |
59 |
62 |
57 |
64 |
2 |
7 |
6 |
3 |
61 |
60 |
63 |
58 |
8 |
1 |
|
B
12 |
13 |
51 |
54 |
49 |
56 |
10 |
15 |
14 |
11 |
53 |
52 |
55 |
50 |
16 |
9 |
|
C
20 |
21 |
43 |
46 |
41 |
48 |
18 |
23 |
22 |
19 |
45 |
44 |
47 |
42 |
24 |
17 |
|
D
28 |
29 |
35 |
38 |
33 |
40 |
26 |
31 |
30 |
27 |
37 |
36 |
39 |
34 |
32 |
25 |
|
Based on this set of Pan Magic Squares of the 4th order, Magic Squares of the 8th order could be constructed.
The relation between the numbers of these Pan Magic Squares is as follows:
A
4 |
5 |
n2-5 |
n2-2 |
n2-7 |
n2 |
2 |
7 |
6 |
3 |
n2-3 |
n2-4 |
n2-1 |
n2-6 |
8 |
1 |
|
B
a1+8 |
a2+8 |
a3-8 |
a4-8 |
a5-8 |
a6-8 |
a7+8 |
a8+8 |
a9+8 |
a10+8 |
a11-8 |
a12-8 |
a13-8 |
a14-8 |
a15+8 |
a16+8 |
|
C
b1+8 |
b2+8 |
b3-8 |
b4-8 |
b5-8 |
b6-8 |
b7+8 |
b8+8 |
b9+8 |
b10+8 |
b11-8 |
b12-8 |
b13-8 |
b14-8 |
b15+8 |
b16+8 |
|
D
c1+8 |
c2+8 |
c3-8 |
c4-8 |
c5-8 |
c6-8 |
c7+8 |
c8+8 |
c9+8 |
c10+8 |
c11-8 |
c12-8 |
c13-8 |
c14-8 |
c15+8 |
c16+8 |
|
Based on abovementioned relations, it can be proven that each square contains 16 different integers:
Square A |
Square B |
Square C |
Square D |
ai (low) |
ai (high) |
ai + 8 |
ai - 8 |
bi + 8 |
bi - 8 |
ci + 8 |
ci - 8 |
1 |
57 |
9 |
49 |
17 |
41 |
25 |
33 |
2 |
58 |
10 |
50 |
18 |
42 |
26 |
34 |
3 |
59 |
11 |
51 |
19 |
43 |
27 |
35 |
4 |
60 |
12 |
52 |
20 |
44 |
28 |
36 |
5 |
61 |
13 |
53 |
21 |
45 |
29 |
37 |
6 |
62 |
14 |
54 |
22 |
46 |
30 |
38 |
7 |
63 |
15 |
55 |
23 |
47 |
31 |
39 |
8 |
64 |
16 |
56 |
24 |
48 |
32 |
40 |
The last square contains 16 consecutive distinct integers.
For all Magic Squares of even order, composed out of Pan Magic Squares of the 4th order, comparable relations
can be found and summarized as follows:
Main Square |
Sub Square Order 4 |
Total |
Order n |
Sum Sn |
Quantity |
Sum S4 |
Permutations |
Quantity |
4 |
34 |
1 |
34 |
1 |
384 |
8 |
260 |
4 |
130 |
4! |
0,5 1012 |
12 |
870 |
9 |
290 |
9! |
6,6 1028 |
16 |
2056 |
16 |
514 |
16! |
4,7 1054 |
20 |
4010 |
25 |
802 |
25! |
6,3 1089 |
... |
... |
... |
... |
... |
... |
n |
n(n2+1)/2 |
(n/4)2 |
4*Sn/n |
(n/4)2! |
(n/4)2! 384(n/4)2 |
Next sections show sets of Pan Magic Squares of the 4th order, enabling the construction of 12th, 16th and 20th
order Magic Squares.
22.2 Magic Squares (12 x 12)
For 12th order Magic squares, following set of 9 Pan Magic Squares - each containing 16 different integers -
with magic sum s4 = 290 can be found:
4 |
5 |
139 |
142 |
137 |
144 |
2 |
7 |
6 |
3 |
141 |
140 |
143 |
138 |
8 |
1 |
|
12 |
13 |
131 |
134 |
129 |
136 |
10 |
15 |
14 |
11 |
133 |
132 |
135 |
130 |
16 |
9 |
|
20 |
21 |
123 |
126 |
121 |
128 |
18 |
23 |
22 |
19 |
125 |
124 |
127 |
122 |
24 |
17 |
|
28 |
29 |
115 |
118 |
113 |
120 |
26 |
31 |
30 |
27 |
117 |
116 |
119 |
114 |
32 |
25 |
|
36 |
37 |
107 |
110 |
105 |
112 |
34 |
39 |
38 |
35 |
109 |
108 |
111 |
106 |
40 |
33 |
|
44 |
45 |
99 |
102 |
97 |
104 |
42 |
47 |
46 |
43 |
101 |
100 |
103 |
98 |
48 |
41 |
|
52 |
53 |
91 |
94 |
89 |
96 |
50 |
55 |
54 |
51 |
93 |
92 |
95 |
90 |
56 |
49 |
|
60 |
61 |
83 |
86 |
81 |
88 |
58 |
63 |
62 |
59 |
85 |
84 |
87 |
82 |
64 |
57 |
|
68 |
69 |
75 |
78 |
73 |
80 |
66 |
71 |
70 |
67 |
77 |
76 |
79 |
74 |
72 |
65 |
|
These 9 squares can be arranged in 9! ways, resulting in 9! * 3849 = 6,6 1028 Magic Squares of the 12th order
with magic sum s12 = 870.
22.3 Magic Squares (16 x 16)
For 16th order Magic squares, following set of 16 Pan Magic Squares - each containing 16 different integers -
with magic sum s4 = 514 can be found:
4 |
5 |
251 |
254 |
249 |
256 |
2 |
7 |
6 |
3 |
253 |
252 |
255 |
250 |
8 |
1 |
|
12 |
13 |
243 |
246 |
241 |
248 |
10 |
15 |
14 |
11 |
245 |
244 |
247 |
242 |
16 |
9 |
|
20 |
21 |
235 |
238 |
233 |
240 |
18 |
23 |
22 |
19 |
237 |
236 |
239 |
234 |
24 |
17 |
|
28 |
29 |
227 |
230 |
225 |
232 |
26 |
31 |
30 |
27 |
229 |
228 |
231 |
226 |
32 |
25 |
|
36 |
37 |
219 |
222 |
217 |
224 |
34 |
39 |
38 |
35 |
221 |
220 |
223 |
218 |
40 |
33 |
|
44 |
45 |
211 |
214 |
209 |
216 |
42 |
47 |
46 |
43 |
213 |
212 |
215 |
210 |
48 |
41 |
|
52 |
53 |
203 |
206 |
201 |
208 |
50 |
55 |
54 |
51 |
205 |
204 |
207 |
202 |
56 |
49 |
|
60 |
61 |
195 |
198 |
193 |
200 |
58 |
63 |
62 |
59 |
197 |
196 |
199 |
194 |
64 |
57 |
|
68 |
69 |
187 |
190 |
185 |
192 |
66 |
71 |
70 |
67 |
189 |
188 |
191 |
186 |
72 |
65 |
|
76 |
77 |
179 |
182 |
177 |
184 |
74 |
79 |
78 |
75 |
181 |
180 |
183 |
178 |
80 |
73 |
|
84 |
85 |
171 |
174 |
169 |
176 |
82 |
87 |
86 |
83 |
173 |
172 |
175 |
170 |
88 |
81 |
|
92 |
93 |
163 |
166 |
161 |
168 |
90 |
95 |
94 |
91 |
165 |
164 |
167 |
162 |
96 |
89 |
|
100 |
101 |
155 |
158 |
153 |
160 |
98 |
103 |
102 |
99 |
157 |
156 |
159 |
154 |
104 |
97 |
|
108 |
109 |
147 |
150 |
145 |
152 |
106 |
111 |
110 |
107 |
149 |
148 |
151 |
146 |
112 |
105 |
|
116 |
117 |
139 |
142 |
137 |
144 |
114 |
119 |
118 |
115 |
141 |
140 |
143 |
138 |
120 |
113 |
|
124 |
125 |
131 |
134 |
129 |
136 |
122 |
127 |
126 |
123 |
133 |
132 |
135 |
130 |
128 |
121 |
|
These 16 squares can be arranged in 16! ways, resulting in 16! * 38416 = 4,7 1054 Magic Squares of the 16th order
with magic sum s16 = 2056.
22.4 Magic Squares (20 x 20)
For 20th order Magic squares, following set of 25 Pan Magic Squares - each containing 16 different integers -
with magic sum s4 = 802 can be found:
4 |
5 |
395 |
398 |
393 |
400 |
2 |
7 |
6 |
3 |
397 |
396 |
399 |
394 |
8 |
1 |
|
12 |
13 |
387 |
390 |
385 |
392 |
10 |
15 |
14 |
11 |
389 |
388 |
391 |
386 |
16 |
9 |
|
20 |
21 |
379 |
382 |
377 |
384 |
18 |
23 |
22 |
19 |
381 |
380 |
383 |
378 |
24 |
17 |
|
28 |
29 |
371 |
374 |
369 |
376 |
26 |
31 |
30 |
27 |
373 |
372 |
375 |
370 |
32 |
25 |
|
36 |
37 |
363 |
366 |
361 |
368 |
34 |
39 |
38 |
35 |
365 |
364 |
367 |
362 |
40 |
33 |
|
44 |
45 |
355 |
358 |
353 |
360 |
42 |
47 |
46 |
43 |
357 |
356 |
359 |
354 |
48 |
41 |
|
52 |
53 |
347 |
350 |
345 |
352 |
50 |
55 |
54 |
51 |
349 |
348 |
351 |
346 |
56 |
49 |
|
60 |
61 |
339 |
342 |
337 |
344 |
58 |
63 |
62 |
59 |
341 |
340 |
343 |
338 |
64 |
57 |
|
68 |
69 |
331 |
334 |
329 |
336 |
66 |
71 |
70 |
67 |
333 |
332 |
335 |
330 |
72 |
65 |
|
76 |
77 |
323 |
326 |
321 |
328 |
74 |
79 |
78 |
75 |
325 |
324 |
327 |
322 |
80 |
73 |
|
84 |
85 |
315 |
318 |
313 |
320 |
82 |
87 |
86 |
83 |
317 |
316 |
319 |
314 |
88 |
81 |
|
92 |
93 |
307 |
310 |
305 |
312 |
90 |
95 |
94 |
91 |
309 |
308 |
311 |
306 |
96 |
89 |
|
100 |
101 |
299 |
302 |
297 |
304 |
98 |
103 |
102 |
99 |
301 |
300 |
303 |
298 |
104 |
97 |
|
108 |
109 |
291 |
294 |
289 |
296 |
106 |
111 |
110 |
107 |
293 |
292 |
295 |
290 |
112 |
105 |
|
116 |
117 |
283 |
286 |
281 |
288 |
114 |
119 |
118 |
115 |
285 |
284 |
287 |
282 |
120 |
113 |
|
124 |
125 |
275 |
278 |
273 |
280 |
122 |
127 |
126 |
123 |
277 |
276 |
279 |
274 |
128 |
121 |
|
132 |
133 |
267 |
270 |
265 |
272 |
130 |
135 |
134 |
131 |
269 |
268 |
271 |
266 |
136 |
129 |
|
140 |
141 |
259 |
262 |
257 |
264 |
138 |
143 |
142 |
139 |
261 |
260 |
263 |
258 |
144 |
137 |
|
148 |
149 |
251 |
254 |
249 |
256 |
146 |
151 |
150 |
147 |
253 |
252 |
255 |
250 |
152 |
145 |
|
156 |
157 |
243 |
246 |
241 |
248 |
154 |
159 |
158 |
155 |
245 |
244 |
247 |
242 |
160 |
153 |
|
164 |
165 |
235 |
238 |
233 |
240 |
162 |
167 |
166 |
163 |
237 |
236 |
239 |
234 |
168 |
161 |
|
172 |
173 |
227 |
230 |
225 |
232 |
170 |
175 |
174 |
171 |
229 |
228 |
231 |
226 |
176 |
169 |
|
180 |
181 |
219 |
222 |
217 |
224 |
178 |
183 |
182 |
179 |
221 |
220 |
223 |
218 |
184 |
177 |
|
188 |
189 |
211 |
214 |
209 |
216 |
186 |
191 |
190 |
187 |
213 |
212 |
215 |
210 |
192 |
185 |
|
196 |
197 |
203 |
206 |
201 |
208 |
194 |
199 |
198 |
195 |
205 |
204 |
207 |
202 |
200 |
193 |
|
These 25 squares can be arranged in 25! ways, resulting in 25! * 38425 = 6,3 1089 Magic Squares of the 20th order
with magic sum s20 = 4010.
|