Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

22.0 Magic Squares, Higher Order, Composed

22.5 Introduction, 6 x 6 Sub Squares

Comparable with previous section for 4 x 4 Magic Squares, higher order Magic Squares can be composed out of 6 x 6 Magic Squares.

The relation between the integers of the 6 x 6 Magic Sub Squares is however not so elegant as found for 4 x 4 Pan Magic Squares (ref. Section 22.1).

22.6 Magic Squares (12 x 12)
     Row Symmetric Sub Squares


In Section 6.11.3 a procedures was developed to generate 6th order Row Symmetric Magic Squares with magic sum s6 = 111.

With some minor modifications subject procedure can be used to find, within the integer range 1 ... 144, a set of 4 Magic Squares - each containing 36 different integers and with magic sum s6 = 435 - as shown below:

129 14 15 124 134 19
16 131 130 21 11 126
8 10 13 127 138 139
137 135 132 18 7 6
3 4 5 136 143 144
142 141 140 9 2 1
114 28 37 107 116 33
31 117 108 38 29 112
26 27 30 111 120 121
119 118 115 34 25 24
20 22 23 109 128 133
125 123 122 36 17 12
94 46 58 91 96 50
51 99 87 54 49 95
44 45 48 93 102 103
101 100 97 52 43 42
39 40 41 92 110 113
106 105 104 53 35 32
79 62 72 76 78 68
66 83 73 69 67 77
63 64 65 74 84 85
82 81 80 71 61 60
56 57 59 75 90 98
89 88 86 70 55 47

Other ranges might be possible.

The 4 squares can be arranged in 4! ways, resulting in 4! * n64 Magic Squares of the 12th order with magic sum s12 = 870 (n6 = number of possible Row Symmetric Sub Squares).

22.7 Magic Squares (12 x 12)
     Concentric Sub Squares


The four ranges of non consecutive integers found in previous section can be used to generate Concentric Magic Squares - with Pan Magic Center Squares - as shown below:

144 5 8 130 141 7
9 132 21 131 6 136
16 134 3 135 18 129
126 14 139 13 124 19
2 10 127 11 142 143
138 140 137 15 4 1
133 23 17 36 115 111
107 27 120 117 26 38
33 121 22 31 116 112
108 28 119 118 25 37
20 114 29 24 123 125
34 122 128 109 30 12
113 39 50 87 102 44
42 96 54 99 41 103
51 100 40 97 53 94
93 46 104 49 91 52
35 48 92 45 105 110
101 106 95 58 43 32
98 59 57 79 81 61
60 73 78 76 63 85
68 83 56 80 71 77
70 69 82 72 67 75
55 65 74 62 89 90
84 86 88 66 64 47

The square shown above corresponds with at least (4!) * (384 * ((8 * (4!)2)4 = 2,35 1026 order 12 Composed Magic Squares (s12 = 870).

22.8 Magic Squares (12 x 12)
     Sub Squares with Symmetrical Diagonals


Magic Square M of order 6 with the numbers 1 ... 36 can be written as M = A + 6 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4 and 5 as illustrated below for a Magic Square with Symmetrical Diagonals:

A
5 1 2 3 4 0
0 4 2 3 1 5
0 1 3 2 4 5
5 1 3 2 4 0
0 4 3 2 1 5
5 4 2 3 1 0
B
0 5 0 5 5 0
1 1 4 4 1 4
3 2 2 2 3 3
2 3 3 3 2 2
4 4 1 1 4 1
5 0 5 0 0 5
M = A + 6*B +[1]
6 32 3 34 35 1
7 11 27 28 8 30
19 14 16 15 23 24
18 20 22 21 17 13
25 29 10 9 26 12
36 5 33 4 2 31

Magic Square M of order 12 with the numbers 1 ... 144 can be written as M = A + 12 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4 ... 11.

The balanced series {0, 1, 2, 3, 4 ... 11} can be split into two balanced sub series e.g.

     {0, 1, 2, 9, 10, 11} and {3, 4, 5, 6, 7, 8}

which can be used for the construction of four Magic Sub Squares with Symmetric Diagonals, as illustrated below:

12 134 3 142 143 1
13 23 123 130 14 132
109 26 34 27 119 120
36 110 118 111 35 25
121 131 22 15 122 24
144 11 135 10 2 133
48 98 39 106 107 37
49 59 87 94 50 96
73 62 70 63 83 84
72 74 82 75 71 61
85 95 58 51 86 60
108 47 99 46 38 97
45 101 42 103 104 40
52 56 90 91 53 93
76 65 67 66 80 81
69 77 79 78 68 64
88 92 55 54 89 57
105 44 102 43 41 100
9 137 6 139 140 4
16 20 126 127 17 129
112 29 31 30 116 117
33 113 115 114 32 28
124 128 19 18 125 21
141 8 138 7 5 136

Attachment 22.8.1 shows the unique sets (8 ea) of order 6 balanced lines for the integers 0 ... 11.

Attachment 22.8.2 shows the resulting order 12 Magic Squares composed of Magic Sub Squares with Symmetrical Diagonals.

Each square shown corresponds with at least (4!) * 7684 = 8,35 1012 order 12 Composed Magic Squares (s12 = 870).

22.9 Magic Squares (18 x 18)
     Sub Squares with Symmetrical Diagonals


Magic Square M of order 18 with the numbers 1 ... 324 can be written as M = A + 18 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4 ... 17.

The balanced series {0, 1, 2, 3, 4 ... 17} can be split into three balanced sub series e.g.

     {0, 1, 2, 15, 16, 17}, {3, 4, 5, 12, 13, 14} and {6, 7, 8, 9, 10, 11}

which can be used for the construction of nine Magic Sub Squares with Symmetric Diagonals, as illustrated below:

18 308 3 322 323 1
19 35 291 304 20 306
271 38 52 39 287 288
54 272 286 273 53 37
289 305 34 21 290 36
324 17 309 16 2 307
15 311 6 319 320 4
22 32 294 301 23 303
274 41 49 42 284 285
51 275 283 276 50 40
292 302 31 24 293 33
321 14 312 13 5 310
12 314 9 316 317 7
25 29 297 298 26 300
277 44 46 45 281 282
48 278 280 279 47 43
295 299 28 27 296 30
318 11 315 10 8 313
72 254 57 268 269 55
73 89 237 250 74 252
217 92 106 93 233 234
108 218 232 219 107 91
235 251 88 75 236 90
270 71 255 70 56 253
69 257 60 265 266 58
76 86 240 247 77 249
220 95 103 96 230 231
105 221 229 222 104 94
238 248 85 78 239 87
267 68 258 67 59 256
66 260 63 262 263 61
79 83 243 244 80 246
223 98 100 99 227 228
102 224 226 225 101 97
241 245 82 81 242 84
264 65 261 64 62 259
126 200 111 214 215 109
127 143 183 196 128 198
163 146 160 147 179 180
162 164 178 165 161 145
181 197 142 129 182 144
216 125 201 124 110 199
123 203 114 211 212 112
130 140 186 193 131 195
166 149 157 150 176 177
159 167 175 168 158 148
184 194 139 132 185 141
213 122 204 121 113 202
120 206 117 208 209 115
133 137 189 190 134 192
169 152 154 153 173 174
156 170 172 171 155 151
187 191 136 135 188 138
210 119 207 118 116 205

Attachment 22.9.1 shows the unique sets (560 ea) of order 6 balanced lines for the integers 0 ... 17.

Attachment 22.9.2 shows a few of the resulting order 18 Magic Squares composed of nine Magic Sub Squares with Symmetrical Diagonals.

Each square shown corresponds with at least (9!) * 7689 = 3,37 1031 order 18 Composed Magic Squares (s18 = 2925).


Vorige Pagina Volgende Pagina Index About the Author