22.0 Magic Squares, Higher Order, Composed
22.5 Introduction, 6 x 6 Sub Squares
Comparable with previous section for 4 x 4 Magic Squares, higher order Magic Squares can be composed out of 6 x 6 Magic Squares.
The relation between the integers of the 6 x 6 Magic Sub Squares is however not so elegant as found for 4 x 4 Pan Magic Squares
(ref. Section 22.1).
22.6 Magic Squares (12 x 12)
Row Symmetric Sub Squares
In Section 6.11.3 a procedures was developed to generate 6th order Row Symmetric Magic Squares with magic sum s6 = 111.
With some minor modifications subject procedure can be used to find, within the integer range 1 ... 144, a set of 4 Magic Squares - each containing 36 different integers and with magic sum s6 = 435 - as shown below:
129 |
14 |
15 |
124 |
134 |
19 |
16 |
131 |
130 |
21 |
11 |
126 |
8 |
10 |
13 |
127 |
138 |
139 |
137 |
135 |
132 |
18 |
7 |
6 |
3 |
4 |
5 |
136 |
143 |
144 |
142 |
141 |
140 |
9 |
2 |
1 |
|
114 |
28 |
37 |
107 |
116 |
33 |
31 |
117 |
108 |
38 |
29 |
112 |
26 |
27 |
30 |
111 |
120 |
121 |
119 |
118 |
115 |
34 |
25 |
24 |
20 |
22 |
23 |
109 |
128 |
133 |
125 |
123 |
122 |
36 |
17 |
12 |
|
94 |
46 |
58 |
91 |
96 |
50 |
51 |
99 |
87 |
54 |
49 |
95 |
44 |
45 |
48 |
93 |
102 |
103 |
101 |
100 |
97 |
52 |
43 |
42 |
39 |
40 |
41 |
92 |
110 |
113 |
106 |
105 |
104 |
53 |
35 |
32 |
|
79 |
62 |
72 |
76 |
78 |
68 |
66 |
83 |
73 |
69 |
67 |
77 |
63 |
64 |
65 |
74 |
84 |
85 |
82 |
81 |
80 |
71 |
61 |
60 |
56 |
57 |
59 |
75 |
90 |
98 |
89 |
88 |
86 |
70 |
55 |
47 |
|
Other ranges might be possible.
The 4 squares can be arranged in 4! ways, resulting in 4! * n64 Magic Squares of the 12th order with magic sum s12 = 870
(n6 = number of possible Row Symmetric Sub Squares).
22.7 Magic Squares (12 x 12)
Concentric Sub Squares
The four ranges of non consecutive integers found in previous section can be used to generate Concentric Magic Squares
- with Pan Magic Center Squares -
as shown below:
144 |
5 |
8 |
130 |
141 |
7 |
9 |
132 |
21 |
131 |
6 |
136 |
16 |
134 |
3 |
135 |
18 |
129 |
126 |
14 |
139 |
13 |
124 |
19 |
2 |
10 |
127 |
11 |
142 |
143 |
138 |
140 |
137 |
15 |
4 |
1 |
|
133 |
23 |
17 |
36 |
115 |
111 |
107 |
27 |
120 |
117 |
26 |
38 |
33 |
121 |
22 |
31 |
116 |
112 |
108 |
28 |
119 |
118 |
25 |
37 |
20 |
114 |
29 |
24 |
123 |
125 |
34 |
122 |
128 |
109 |
30 |
12 |
|
113 |
39 |
50 |
87 |
102 |
44 |
42 |
96 |
54 |
99 |
41 |
103 |
51 |
100 |
40 |
97 |
53 |
94 |
93 |
46 |
104 |
49 |
91 |
52 |
35 |
48 |
92 |
45 |
105 |
110 |
101 |
106 |
95 |
58 |
43 |
32 |
|
98 |
59 |
57 |
79 |
81 |
61 |
60 |
73 |
78 |
76 |
63 |
85 |
68 |
83 |
56 |
80 |
71 |
77 |
70 |
69 |
82 |
72 |
67 |
75 |
55 |
65 |
74 |
62 |
89 |
90 |
84 |
86 |
88 |
66 |
64 |
47 |
|
The square shown above corresponds with at least
(4!) * (384 * ((8 * (4!)2)4 = 2,35 1026 order 12 Composed Magic Squares (s12 = 870).
22.8 Magic Squares (12 x 12)
Sub Squares with Symmetrical Diagonals
Magic Square M of order 6 with the numbers 1 ... 36 can be written as
M =
A +
6 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 and 5 as illustrated below for a Magic Square with Symmetrical Diagonals:
A
5 |
1 |
2 |
3 |
4 |
0 |
0 |
4 |
2 |
3 |
1 |
5 |
0 |
1 |
3 |
2 |
4 |
5 |
5 |
1 |
3 |
2 |
4 |
0 |
0 |
4 |
3 |
2 |
1 |
5 |
5 |
4 |
2 |
3 |
1 |
0 |
|
B
0 |
5 |
0 |
5 |
5 |
0 |
1 |
1 |
4 |
4 |
1 |
4 |
3 |
2 |
2 |
2 |
3 |
3 |
2 |
3 |
3 |
3 |
2 |
2 |
4 |
4 |
1 |
1 |
4 |
1 |
5 |
0 |
5 |
0 |
0 |
5 |
|
M = A + 6*B +[1]
6 |
32 |
3 |
34 |
35 |
1 |
7 |
11 |
27 |
28 |
8 |
30 |
19 |
14 |
16 |
15 |
23 |
24 |
18 |
20 |
22 |
21 |
17 |
13 |
25 |
29 |
10 |
9 |
26 |
12 |
36 |
5 |
33 |
4 |
2 |
31 |
|
Magic Square M of order 12 with the numbers 1 ... 144 can be written as
M =
A +
12 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 11.
The balanced series {0, 1, 2, 3, 4 ... 11} can be split into two balanced sub series e.g.
{0, 1, 2, 9, 10, 11} and {3, 4, 5, 6, 7, 8}
which can be used for the construction of four Magic Sub Squares with Symmetric Diagonals, as illustrated below:
12 |
134 |
3 |
142 |
143 |
1 |
13 |
23 |
123 |
130 |
14 |
132 |
109 |
26 |
34 |
27 |
119 |
120 |
36 |
110 |
118 |
111 |
35 |
25 |
121 |
131 |
22 |
15 |
122 |
24 |
144 |
11 |
135 |
10 |
2 |
133 |
|
48 |
98 |
39 |
106 |
107 |
37 |
49 |
59 |
87 |
94 |
50 |
96 |
73 |
62 |
70 |
63 |
83 |
84 |
72 |
74 |
82 |
75 |
71 |
61 |
85 |
95 |
58 |
51 |
86 |
60 |
108 |
47 |
99 |
46 |
38 |
97 |
|
45 |
101 |
42 |
103 |
104 |
40 |
52 |
56 |
90 |
91 |
53 |
93 |
76 |
65 |
67 |
66 |
80 |
81 |
69 |
77 |
79 |
78 |
68 |
64 |
88 |
92 |
55 |
54 |
89 |
57 |
105 |
44 |
102 |
43 |
41 |
100 |
|
9 |
137 |
6 |
139 |
140 |
4 |
16 |
20 |
126 |
127 |
17 |
129 |
112 |
29 |
31 |
30 |
116 |
117 |
33 |
113 |
115 |
114 |
32 |
28 |
124 |
128 |
19 |
18 |
125 |
21 |
141 |
8 |
138 |
7 |
5 |
136 |
|
Attachment 22.8.1 shows the unique sets (8 ea) of order 6 balanced lines for the integers 0 ... 11.
Attachment 22.8.2 shows the resulting order 12 Magic Squares composed of Magic Sub Squares with Symmetrical Diagonals.
Each square shown corresponds with at least (4!) * 7684 = 8,35 1012
order 12 Composed Magic Squares (s12 = 870).
22.9 Magic Squares (18 x 18)
Sub Squares with Symmetrical Diagonals
Magic Square M of order 18 with the numbers 1 ... 324 can be written as
M =
A +
18 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 17.
The balanced series {0, 1, 2, 3, 4 ... 17} can be split into three balanced sub series e.g.
{0, 1, 2, 15, 16, 17}, {3, 4, 5, 12, 13, 14} and {6, 7, 8, 9, 10, 11}
which can be used for the construction of nine Magic Sub Squares with Symmetric Diagonals, as illustrated below:
18 |
308 |
3 |
322 |
323 |
1 |
19 |
35 |
291 |
304 |
20 |
306 |
271 |
38 |
52 |
39 |
287 |
288 |
54 |
272 |
286 |
273 |
53 |
37 |
289 |
305 |
34 |
21 |
290 |
36 |
324 |
17 |
309 |
16 |
2 |
307 |
|
15 |
311 |
6 |
319 |
320 |
4 |
22 |
32 |
294 |
301 |
23 |
303 |
274 |
41 |
49 |
42 |
284 |
285 |
51 |
275 |
283 |
276 |
50 |
40 |
292 |
302 |
31 |
24 |
293 |
33 |
321 |
14 |
312 |
13 |
5 |
310 |
|
12 |
314 |
9 |
316 |
317 |
7 |
25 |
29 |
297 |
298 |
26 |
300 |
277 |
44 |
46 |
45 |
281 |
282 |
48 |
278 |
280 |
279 |
47 |
43 |
295 |
299 |
28 |
27 |
296 |
30 |
318 |
11 |
315 |
10 |
8 |
313 |
|
72 |
254 |
57 |
268 |
269 |
55 |
73 |
89 |
237 |
250 |
74 |
252 |
217 |
92 |
106 |
93 |
233 |
234 |
108 |
218 |
232 |
219 |
107 |
91 |
235 |
251 |
88 |
75 |
236 |
90 |
270 |
71 |
255 |
70 |
56 |
253 |
|
69 |
257 |
60 |
265 |
266 |
58 |
76 |
86 |
240 |
247 |
77 |
249 |
220 |
95 |
103 |
96 |
230 |
231 |
105 |
221 |
229 |
222 |
104 |
94 |
238 |
248 |
85 |
78 |
239 |
87 |
267 |
68 |
258 |
67 |
59 |
256 |
|
66 |
260 |
63 |
262 |
263 |
61 |
79 |
83 |
243 |
244 |
80 |
246 |
223 |
98 |
100 |
99 |
227 |
228 |
102 |
224 |
226 |
225 |
101 |
97 |
241 |
245 |
82 |
81 |
242 |
84 |
264 |
65 |
261 |
64 |
62 |
259 |
|
126 |
200 |
111 |
214 |
215 |
109 |
127 |
143 |
183 |
196 |
128 |
198 |
163 |
146 |
160 |
147 |
179 |
180 |
162 |
164 |
178 |
165 |
161 |
145 |
181 |
197 |
142 |
129 |
182 |
144 |
216 |
125 |
201 |
124 |
110 |
199 |
|
123 |
203 |
114 |
211 |
212 |
112 |
130 |
140 |
186 |
193 |
131 |
195 |
166 |
149 |
157 |
150 |
176 |
177 |
159 |
167 |
175 |
168 |
158 |
148 |
184 |
194 |
139 |
132 |
185 |
141 |
213 |
122 |
204 |
121 |
113 |
202 |
|
120 |
206 |
117 |
208 |
209 |
115 |
133 |
137 |
189 |
190 |
134 |
192 |
169 |
152 |
154 |
153 |
173 |
174 |
156 |
170 |
172 |
171 |
155 |
151 |
187 |
191 |
136 |
135 |
188 |
138 |
210 |
119 |
207 |
118 |
116 |
205 |
|
Attachment 22.9.1 shows the unique sets (560 ea) of order 6 balanced lines for the integers 0 ... 17.
Attachment 22.9.2 shows a few of the resulting order 18 Magic Squares composed of nine Magic Sub Squares with Symmetrical Diagonals.
Each square shown corresponds with at least (9!) * 7689 = 3,37 1031
order 18 Composed Magic Squares (s18 = 2925).
|