| 
22.0 Magic Squares, Higher Order, Composed
 
 
22.5 Introduction, 6 x 6 Sub Squares 
 
 
Comparable with previous section for 4 x 4 Magic Squares, higher order Magic Squares can be composed out of 6 x 6 Magic Squares. 
 The relation between the integers of the 6 x 6 Magic Sub Squares is however not so elegant as found for  4 x 4 Pan Magic Squares 
(ref. Section 22.1).
 
 
 
22.6 Magic Squares (12 x 12)Row Symmetric Sub Squares
 
 
 
In Section 6.11.3 a procedures was developed to generate 6th order Row Symmetric Magic Squares with magic sum s6 = 111. 
 With some minor modifications subject procedure can be used to find, within the integer range 1 ... 144, a set of 4 Magic Squares - each containing 36 different integers and with magic sum s6 = 435 - as shown below:
 
| 
| 129 | 14 | 15 | 124 | 134 | 19 |  
| 16 | 131 | 130 | 21 | 11 | 126 |  
| 8 | 10 | 13 | 127 | 138 | 139 |  
| 137 | 135 | 132 | 18 | 7 | 6 |  
| 3 | 4 | 5 | 136 | 143 | 144 |  
| 142 | 141 | 140 | 9 | 2 | 1 |  | 
| 114 | 28 | 37 | 107 | 116 | 33 |  
| 31 | 117 | 108 | 38 | 29 | 112 |  
| 26 | 27 | 30 | 111 | 120 | 121 |  
| 119 | 118 | 115 | 34 | 25 | 24 |  
| 20 | 22 | 23 | 109 | 128 | 133 |  
| 125 | 123 | 122 | 36 | 17 | 12 |  |  
| 
| 94 | 46 | 58 | 91 | 96 | 50 |  
| 51 | 99 | 87 | 54 | 49 | 95 |  
| 44 | 45 | 48 | 93 | 102 | 103 |  
| 101 | 100 | 97 | 52 | 43 | 42 |  
| 39 | 40 | 41 | 92 | 110 | 113 |  
| 106 | 105 | 104 | 53 | 35 | 32 |  | 
| 79 | 62 | 72 | 76 | 78 | 68 |  
| 66 | 83 | 73 | 69 | 67 | 77 |  
| 63 | 64 | 65 | 74 | 84 | 85 |  
| 82 | 81 | 80 | 71 | 61 | 60 |  
| 56 | 57 | 59 | 75 | 90 | 98 |  
| 89 | 88 | 86 | 70 | 55 | 47 |  | 
 
Other ranges might be possible.
 The 4 squares can be arranged in 4! ways, resulting in 4! * n64  Magic Squares of the 12th order  with magic sum s12 = 870
(n6 = number of possible Row Symmetric Sub Squares).
 
 
 
22.7  Magic Squares (12 x 12)Concentric Sub Squares
 
 
 
The four ranges of non consecutive integers found in previous section can be used to generate Concentric Magic Squares 
- with Pan Magic Center Squares -
as shown below: 
 
| 
| 144 | 5 | 8 | 130 | 141 | 7 |  
| 9 | 132 | 21 | 131 | 6 | 136 |  
| 16 | 134 | 3 | 135 | 18 | 129 |  
| 126 | 14 | 139 | 13 | 124 | 19 |  
| 2 | 10 | 127 | 11 | 142 | 143 |  
| 138 | 140 | 137 | 15 | 4 | 1 |  | 
| 133 | 23 | 17 | 36 | 115 | 111 |  
| 107 | 27 | 120 | 117 | 26 | 38 |  
| 33 | 121 | 22 | 31 | 116 | 112 |  
| 108 | 28 | 119 | 118 | 25 | 37 |  
| 20 | 114 | 29 | 24 | 123 | 125 |  
| 34 | 122 | 128 | 109 | 30 | 12 |  |  
| 
| 113 | 39 | 50 | 87 | 102 | 44 |  
| 42 | 96 | 54 | 99 | 41 | 103 |  
| 51 | 100 | 40 | 97 | 53 | 94 |  
| 93 | 46 | 104 | 49 | 91 | 52 |  
| 35 | 48 | 92 | 45 | 105 | 110 |  
| 101 | 106 | 95 | 58 | 43 | 32 |  | 
| 98 | 59 | 57 | 79 | 81 | 61 |  
| 60 | 73 | 78 | 76 | 63 | 85 |  
| 68 | 83 | 56 | 80 | 71 | 77 |  
| 70 | 69 | 82 | 72 | 67 | 75 |  
| 55 | 65 | 74 | 62 | 89 | 90 |  
| 84 | 86 | 88 | 66 | 64 | 47 |  | 
 
The square shown above corresponds with at least 
(4!) * (384 * ((8 * (4!)2)4 = 2,35 1026 order 12 Composed Magic Squares (s12 = 870).
 
 
22.8  Magic Squares (12 x 12)Sub Squares with Symmetrical Diagonals
 
 
 
Magic Square M of order 6 with the numbers 1 ... 36 can be written as  
M =
A + 
6 * B + [1] 
where the squares A and B 
contain only the integers  0, 1, 2, 3, 4 and 5 as illustrated below for a Magic Square with Symmetrical Diagonals: 
 
| A 
| 5 | 1 | 2 | 3 | 4 | 0 |  
| 0 | 4 | 2 | 3 | 1 | 5 |  
| 0 | 1 | 3 | 2 | 4 | 5 |  
| 5 | 1 | 3 | 2 | 4 | 0 |  
| 0 | 4 | 3 | 2 | 1 | 5 |  
| 5 | 4 | 2 | 3 | 1 | 0 |  | B 
| 0 | 5 | 0 | 5 | 5 | 0 |  
| 1 | 1 | 4 | 4 | 1 | 4 |  
| 3 | 2 | 2 | 2 | 3 | 3 |  
| 2 | 3 | 3 | 3 | 2 | 2 |  
| 4 | 4 | 1 | 1 | 4 | 1 |  
| 5 | 0 | 5 | 0 | 0 | 5 |  | M = A + 6*B +[1] 
| 6 | 32 | 3 | 34 | 35 | 1 |  
| 7 | 11 | 27 | 28 | 8 | 30 |  
| 19 | 14 | 16 | 15 | 23 | 24 |  
| 18 | 20 | 22 | 21 | 17 | 13 |  
| 25 | 29 | 10 | 9 | 26 | 12 |  
| 36 | 5 | 33 | 4 | 2 | 31 |  | 
 
Magic Square M of order 12 with the numbers 1 ... 144 can be written as  
M =
A + 
12 * B + [1] 
where the squares A and B 
contain only the integers  0, 1, 2, 3, 4 ... 11.
 The balanced series {0, 1, 2, 3, 4 ... 11} can be split into two balanced sub series e.g.
 
 {0, 1, 2, 9, 10, 11} and {3, 4, 5, 6, 7, 8}
 
 which can be used for the construction of four Magic Sub Squares with Symmetric Diagonals, as illustrated below:
 
| 
| 12 | 134 | 3 | 142 | 143 | 1 |  
| 13 | 23 | 123 | 130 | 14 | 132 |  
| 109 | 26 | 34 | 27 | 119 | 120 |  
| 36 | 110 | 118 | 111 | 35 | 25 |  
| 121 | 131 | 22 | 15 | 122 | 24 |  
| 144 | 11 | 135 | 10 | 2 | 133 |  | 
| 48 | 98 | 39 | 106 | 107 | 37 |  
| 49 | 59 | 87 | 94 | 50 | 96 |  
| 73 | 62 | 70 | 63 | 83 | 84 |  
| 72 | 74 | 82 | 75 | 71 | 61 |  
| 85 | 95 | 58 | 51 | 86 | 60 |  
| 108 | 47 | 99 | 46 | 38 | 97 |  |  
| 
| 45 | 101 | 42 | 103 | 104 | 40 |  
| 52 | 56 | 90 | 91 | 53 | 93 |  
| 76 | 65 | 67 | 66 | 80 | 81 |  
| 69 | 77 | 79 | 78 | 68 | 64 |  
| 88 | 92 | 55 | 54 | 89 | 57 |  
| 105 | 44 | 102 | 43 | 41 | 100 |  | 
| 9 | 137 | 6 | 139 | 140 | 4 |  
| 16 | 20 | 126 | 127 | 17 | 129 |  
| 112 | 29 | 31 | 30 | 116 | 117 |  
| 33 | 113 | 115 | 114 | 32 | 28 |  
| 124 | 128 | 19 | 18 | 125 | 21 |  
| 141 | 8 | 138 | 7 | 5 | 136 |  | 
 
Attachment 22.8.1 shows the unique sets (8 ea) of order 6 balanced lines for the integers 0 ... 11.
 Attachment 22.8.2 shows the resulting order 12 Magic Squares composed of Magic Sub Squares with Symmetrical Diagonals.
 
 Each square shown corresponds with at least (4!) * 7684 = 8,35 1012 
order 12 Composed Magic Squares (s12 = 870).
 
 
 
22.9  Magic Squares (18 x 18)Sub Squares with Symmetrical Diagonals
 
 
 
Magic Square M of order 18 with the numbers 1 ... 324 can be written as  
M =
A + 
18 * B + [1] 
where the squares A and B 
contain only the integers  0, 1, 2, 3, 4 ... 17.
 The balanced series {0, 1, 2, 3, 4 ... 17} can be split into three balanced sub series e.g.
 
 {0, 1, 2, 15, 16, 17},  {3, 4, 5, 12, 13, 14} and {6, 7, 8, 9, 10, 11}
 
 which can be used for the construction of nine Magic Sub Squares with Symmetric Diagonals, as illustrated below:
 
| 
| 18 | 308 | 3 | 322 | 323 | 1 |  
| 19 | 35 | 291 | 304 | 20 | 306 |  
| 271 | 38 | 52 | 39 | 287 | 288 |  
| 54 | 272 | 286 | 273 | 53 | 37 |  
| 289 | 305 | 34 | 21 | 290 | 36 |  
| 324 | 17 | 309 | 16 | 2 | 307 |  | 
| 15 | 311 | 6 | 319 | 320 | 4 |  
| 22 | 32 | 294 | 301 | 23 | 303 |  
| 274 | 41 | 49 | 42 | 284 | 285 |  
| 51 | 275 | 283 | 276 | 50 | 40 |  
| 292 | 302 | 31 | 24 | 293 | 33 |  
| 321 | 14 | 312 | 13 | 5 | 310 |  | 
| 12 | 314 | 9 | 316 | 317 | 7 |  
| 25 | 29 | 297 | 298 | 26 | 300 |  
| 277 | 44 | 46 | 45 | 281 | 282 |  
| 48 | 278 | 280 | 279 | 47 | 43 |  
| 295 | 299 | 28 | 27 | 296 | 30 |  
| 318 | 11 | 315 | 10 | 8 | 313 |  |  
| 
| 72 | 254 | 57 | 268 | 269 | 55 |  
| 73 | 89 | 237 | 250 | 74 | 252 |  
| 217 | 92 | 106 | 93 | 233 | 234 |  
| 108 | 218 | 232 | 219 | 107 | 91 |  
| 235 | 251 | 88 | 75 | 236 | 90 |  
| 270 | 71 | 255 | 70 | 56 | 253 |  | 
| 69 | 257 | 60 | 265 | 266 | 58 |  
| 76 | 86 | 240 | 247 | 77 | 249 |  
| 220 | 95 | 103 | 96 | 230 | 231 |  
| 105 | 221 | 229 | 222 | 104 | 94 |  
| 238 | 248 | 85 | 78 | 239 | 87 |  
| 267 | 68 | 258 | 67 | 59 | 256 |  | 
| 66 | 260 | 63 | 262 | 263 | 61 |  
| 79 | 83 | 243 | 244 | 80 | 246 |  
| 223 | 98 | 100 | 99 | 227 | 228 |  
| 102 | 224 | 226 | 225 | 101 | 97 |  
| 241 | 245 | 82 | 81 | 242 | 84 |  
| 264 | 65 | 261 | 64 | 62 | 259 |  |  
| 
| 126 | 200 | 111 | 214 | 215 | 109 |  
| 127 | 143 | 183 | 196 | 128 | 198 |  
| 163 | 146 | 160 | 147 | 179 | 180 |  
| 162 | 164 | 178 | 165 | 161 | 145 |  
| 181 | 197 | 142 | 129 | 182 | 144 |  
| 216 | 125 | 201 | 124 | 110 | 199 |  | 
| 123 | 203 | 114 | 211 | 212 | 112 |  
| 130 | 140 | 186 | 193 | 131 | 195 |  
| 166 | 149 | 157 | 150 | 176 | 177 |  
| 159 | 167 | 175 | 168 | 158 | 148 |  
| 184 | 194 | 139 | 132 | 185 | 141 |  
| 213 | 122 | 204 | 121 | 113 | 202 |  | 
| 120 | 206 | 117 | 208 | 209 | 115 |  
| 133 | 137 | 189 | 190 | 134 | 192 |  
| 169 | 152 | 154 | 153 | 173 | 174 |  
| 156 | 170 | 172 | 171 | 155 | 151 |  
| 187 | 191 | 136 | 135 | 188 | 138 |  
| 210 | 119 | 207 | 118 | 116 | 205 |  | 
 
Attachment 22.9.1 shows the unique sets (560 ea) of order 6 balanced lines for the integers 0 ... 17.
 Attachment 22.9.2 shows a few of the resulting order 18 Magic Squares composed of nine Magic Sub Squares with Symmetrical Diagonals.
 
 Each square shown corresponds with at least (9!) * 7689 = 3,37 1031 
order 18 Composed Magic Squares (s18 = 2925).
 
 
 |