Note:
The squares listed above contain also other patterns, however not in all four quadrants.
Subject squares were filtered from the order 17 (Pan) Magic Squares, which can be constructed based on Latin Diagonal Squares,
as discussed in Section 17.2.1.
Following sections will describe and illustrate how comparable squares, not necessarily listed in the table shown above, can be constructed or generated.
12.9.3 Equations Quadrant Magic Patterns
The quadrant properties defined in Section 12.8.1 above can be described by the linear equations as listed in Attachment 12.8.3.
Subject equations
can be combined with the equations describing miscellaneous types of order 17 Magic Squares.
Subject equations might be incorporated in procedures to determine all occurring patterns of (previously) generated Quadrant Magic Squares.
12.9.4 Pan Magic, Example 6
The occurring patterns for the above mentioned Pan Magic Square 'Example 6'
can be summarised as follows (ref. ChkPtrn17):
-
The number of patterns which occur in all 4 Quadrants is nQ4 = 61,
-
All 253 patterns occur in the first Quadrant (left/top).
Attachment 12.8.41 shows for 'Example 6'(separately) the 61 Quadrant Magic Patterns.
Attachment 12.8.42 shows for 'Example 6'(separately) the 253 Patterns occurring in the first Quadrant (left/top).
12.9.5 Ultra Magic
In Section 17.2.2
is described how order 17 Ultra Magic Squares can be constructed based on pairs of Orthogonal Latin Diagonal Squares
A and
T(A).
Note:
Square A is of type R2, L2, L3, R3, L4, R4, L5, R5, L6, R6, L7, R7, L8 and R8.
T(A) is the transposed of A.
With the type R2 based
routine UltraLat17
10.321.920
Quadrant Ultra Magic Squares could be generated as summarised in
Attachment 12.8.52
and following graph:
An example of a Quadrant Ultra Magic Square with nQ4 = 2 (P73/P229) is shown below:
P73
289 |
35 |
84 |
100 |
150 |
200 |
215 |
250 |
8 |
26 |
61 |
108 |
160 |
124 |
174 |
224 |
257 |
3 |
19 |
68 |
103 |
169 |
134 |
184 |
234 |
266 |
284 |
42 |
77 |
95 |
142 |
194 |
209 |
242 |
260 |
276 |
37 |
70 |
102 |
137 |
203 |
219 |
252 |
13 |
28 |
63 |
110 |
162 |
129 |
176 |
228 |
244 |
7 |
22 |
55 |
105 |
155 |
136 |
171 |
237 |
270 |
286 |
47 |
79 |
97 |
144 |
196 |
214 |
230 |
265 |
278 |
41 |
73 |
89 |
139 |
189 |
221 |
239 |
16 |
32 |
65 |
115 |
164 |
131 |
178 |
216 |
246 |
9 |
27 |
57 |
109 |
158 |
123 |
173 |
223 |
272 |
273 |
50 |
83 |
99 |
149 |
198 |
183 |
232 |
267 |
280 |
43 |
78 |
91 |
143 |
192 |
208 |
241 |
2 |
34 |
52 |
118 |
168 |
133 |
202 |
218 |
251 |
11 |
29 |
59 |
111 |
163 |
125 |
177 |
226 |
259 |
275 |
36 |
85 |
86 |
152 |
120 |
186 |
236 |
269 |
285 |
45 |
80 |
93 |
145 |
197 |
210 |
245 |
5 |
21 |
54 |
104 |
170 |
138 |
204 |
205 |
254 |
15 |
31 |
64 |
113 |
165 |
127 |
179 |
231 |
261 |
279 |
39 |
72 |
88 |
157 |
122 |
172 |
238 |
256 |
288 |
49 |
82 |
98 |
147 |
199 |
212 |
247 |
10 |
23 |
58 |
107 |
92 |
141 |
191 |
207 |
240 |
17 |
18 |
67 |
117 |
167 |
132 |
181 |
233 |
263 |
281 |
44 |
74 |
112 |
159 |
126 |
175 |
225 |
258 |
274 |
51 |
69 |
101 |
151 |
201 |
217 |
249 |
12 |
25 |
60 |
76 |
94 |
146 |
193 |
211 |
243 |
4 |
20 |
53 |
119 |
154 |
135 |
185 |
235 |
268 |
283 |
46 |
62 |
114 |
161 |
128 |
180 |
227 |
262 |
277 |
38 |
71 |
87 |
153 |
188 |
220 |
253 |
14 |
30 |
48 |
81 |
96 |
148 |
195 |
213 |
248 |
6 |
24 |
56 |
106 |
156 |
121 |
187 |
222 |
271 |
287 |
33 |
66 |
116 |
166 |
130 |
182 |
229 |
264 |
282 |
40 |
75 |
90 |
140 |
190 |
206 |
255 |
1 |
P229
289 |
35 |
84 |
100 |
150 |
200 |
215 |
250 |
8 |
26 |
61 |
108 |
160 |
124 |
174 |
224 |
257 |
3 |
19 |
68 |
103 |
169 |
134 |
184 |
234 |
266 |
284 |
42 |
77 |
95 |
142 |
194 |
209 |
242 |
260 |
276 |
37 |
70 |
102 |
137 |
203 |
219 |
252 |
13 |
28 |
63 |
110 |
162 |
129 |
176 |
228 |
244 |
7 |
22 |
55 |
105 |
155 |
136 |
171 |
237 |
270 |
286 |
47 |
79 |
97 |
144 |
196 |
214 |
230 |
265 |
278 |
41 |
73 |
89 |
139 |
189 |
221 |
239 |
16 |
32 |
65 |
115 |
164 |
131 |
178 |
216 |
246 |
9 |
27 |
57 |
109 |
158 |
123 |
173 |
223 |
272 |
273 |
50 |
83 |
99 |
149 |
198 |
183 |
232 |
267 |
280 |
43 |
78 |
91 |
143 |
192 |
208 |
241 |
2 |
34 |
52 |
118 |
168 |
133 |
202 |
218 |
251 |
11 |
29 |
59 |
111 |
163 |
125 |
177 |
226 |
259 |
275 |
36 |
85 |
86 |
152 |
120 |
186 |
236 |
269 |
285 |
45 |
80 |
93 |
145 |
197 |
210 |
245 |
5 |
21 |
54 |
104 |
170 |
138 |
204 |
205 |
254 |
15 |
31 |
64 |
113 |
165 |
127 |
179 |
231 |
261 |
279 |
39 |
72 |
88 |
157 |
122 |
172 |
238 |
256 |
288 |
49 |
82 |
98 |
147 |
199 |
212 |
247 |
10 |
23 |
58 |
107 |
92 |
141 |
191 |
207 |
240 |
17 |
18 |
67 |
117 |
167 |
132 |
181 |
233 |
263 |
281 |
44 |
74 |
112 |
159 |
126 |
175 |
225 |
258 |
274 |
51 |
69 |
101 |
151 |
201 |
217 |
249 |
12 |
25 |
60 |
76 |
94 |
146 |
193 |
211 |
243 |
4 |
20 |
53 |
119 |
154 |
135 |
185 |
235 |
268 |
283 |
46 |
62 |
114 |
161 |
128 |
180 |
227 |
262 |
277 |
38 |
71 |
87 |
153 |
188 |
220 |
253 |
14 |
30 |
48 |
81 |
96 |
148 |
195 |
213 |
248 |
6 |
24 |
56 |
106 |
156 |
121 |
187 |
222 |
271 |
287 |
33 |
66 |
116 |
166 |
130 |
182 |
229 |
264 |
282 |
40 |
75 |
90 |
140 |
190 |
206 |
255 |
1 |
Attachment 12.8.51 shows (separately) all Quadrant Magic Patterns for the
first occurring Quadrant Ultra Magic Square with nQ4 = 98 (maximum).
Notes:
-
The squares described above contain also numerous other patterns, however not in all four quadrants.
-
It can be noticed that all Ultra Magic Squares constructed as described in Section 17.2.2
are (Multi) Quadrant Ultra Magic.
12.9.7 Bordered, Centre Square Order 13
Order 17 Bordered Quadrant Magic Squares with order 13 Ultra Magic Centre Squares can be constructed based on:
The construction method is dependent from the extend in which the Quadrant Magic Property is effected by variations in the border(s).
Case 1 P61, P140, P143, P147, P148, P154
The Quadrant Magic Property based on the patterns listed above is invariant for variations of the borders as illustrated by following example:
P154
9 |
2 |
3 |
4 |
277 |
278 |
279 |
280 |
282 |
283 |
284 |
285 |
14 |
15 |
16 |
17 |
137 |
18 |
26 |
20 |
21 |
260 |
261 |
262 |
25 |
27 |
266 |
267 |
268 |
31 |
32 |
271 |
138 |
272 |
35 |
36 |
253 |
88 |
116 |
148 |
180 |
198 |
39 |
60 |
132 |
211 |
76 |
159 |
225 |
254 |
255 |
52 |
135 |
40 |
55 |
134 |
207 |
82 |
165 |
231 |
249 |
90 |
111 |
149 |
177 |
195 |
155 |
238 |
69 |
67 |
228 |
246 |
91 |
106 |
151 |
173 |
201 |
46 |
61 |
130 |
209 |
77 |
166 |
223 |
221 |
102 |
169 |
196 |
47 |
58 |
127 |
210 |
72 |
168 |
224 |
252 |
97 |
112 |
147 |
175 |
121 |
188 |
119 |
70 |
164 |
226 |
247 |
98 |
109 |
144 |
176 |
191 |
49 |
54 |
133 |
216 |
78 |
220 |
171 |
136 |
118 |
182 |
197 |
45 |
56 |
128 |
217 |
75 |
161 |
227 |
242 |
100 |
105 |
150 |
172 |
154 |
170 |
186 |
71 |
167 |
233 |
248 |
96 |
107 |
145 |
183 |
194 |
42 |
57 |
123 |
219 |
104 |
120 |
187 |
87 |
140 |
185 |
190 |
48 |
63 |
129 |
215 |
73 |
162 |
234 |
245 |
93 |
108 |
203 |
103 |
204 |
189 |
212 |
74 |
157 |
236 |
241 |
99 |
114 |
146 |
181 |
192 |
43 |
64 |
126 |
101 |
86 |
205 |
240 |
115 |
143 |
178 |
193 |
38 |
66 |
122 |
218 |
80 |
163 |
232 |
243 |
94 |
50 |
85 |
222 |
206 |
124 |
213 |
81 |
160 |
229 |
244 |
89 |
117 |
139 |
184 |
199 |
44 |
62 |
84 |
68 |
239 |
257 |
95 |
113 |
141 |
179 |
200 |
41 |
59 |
125 |
208 |
83 |
156 |
235 |
250 |
33 |
51 |
256 |
237 |
65 |
131 |
214 |
79 |
158 |
230 |
251 |
92 |
110 |
142 |
174 |
202 |
37 |
53 |
34 |
289 |
152 |
270 |
269 |
30 |
29 |
28 |
265 |
263 |
24 |
23 |
22 |
259 |
258 |
19 |
264 |
1 |
153 |
288 |
287 |
286 |
13 |
12 |
11 |
10 |
8 |
7 |
6 |
5 |
276 |
275 |
274 |
273 |
281 |
Suitable Centre Squares can be selected from the 5760 unique Ultra Magic Squares with routine ChkPtrn17a.
Attachment 12.8.71 shows the first occurring Bordered Quadrant Magic Square for each of the patterns listed above.
Case 2 P38, P39, P45, P51, P134, P135, P138, P139
The Quadrant Magic Property based on the patterns listed above is
invariant for variations of the outer border.
Exhibit P38 describes how P38 Quadrant Bordered Magic Squares, with Ultra Magic Centre Squares, can be constructed
based on Semi Latin Borders as discussed in Section 17.2.4.
Centre Squares as described for Case 1 above (ref. Attachment 12.8.71) will result in two way
Quadrant Bordered Magic Squares e.g. (P38/P61) as illustrated below:
P38
9 |
2 |
3 |
4 |
277 |
278 |
279 |
280 |
282 |
283 |
284 |
285 |
14 |
15 |
16 |
17 |
137 |
18 |
270 |
259 |
260 |
261 |
262 |
263 |
138 |
67 |
254 |
25 |
24 |
23 |
22 |
21 |
26 |
272 |
35 |
172 |
235 |
123 |
182 |
146 |
115 |
160 |
66 |
94 |
71 |
45 |
243 |
212 |
193 |
118 |
255 |
52 |
186 |
59 |
91 |
82 |
38 |
250 |
214 |
200 |
228 |
134 |
179 |
139 |
113 |
158 |
104 |
238 |
69 |
203 |
198 |
226 |
127 |
176 |
150 |
106 |
165 |
61 |
98 |
75 |
49 |
247 |
207 |
87 |
221 |
102 |
220 |
162 |
54 |
96 |
73 |
42 |
244 |
218 |
191 |
233 |
129 |
183 |
143 |
117 |
70 |
188 |
119 |
237 |
211 |
202 |
230 |
122 |
181 |
141 |
110 |
159 |
65 |
89 |
80 |
44 |
251 |
53 |
171 |
136 |
135 |
112 |
166 |
58 |
100 |
77 |
37 |
249 |
209 |
195 |
227 |
133 |
174 |
148 |
155 |
154 |
170 |
169 |
242 |
216 |
197 |
234 |
126 |
185 |
145 |
105 |
164 |
56 |
93 |
74 |
48 |
121 |
120 |
187 |
19 |
142 |
116 |
157 |
63 |
95 |
81 |
41 |
253 |
213 |
190 |
232 |
124 |
178 |
271 |
103 |
204 |
101 |
39 |
246 |
210 |
201 |
225 |
131 |
180 |
149 |
109 |
168 |
60 |
88 |
79 |
189 |
86 |
205 |
84 |
173 |
147 |
107 |
161 |
57 |
99 |
72 |
46 |
248 |
217 |
194 |
236 |
128 |
206 |
85 |
222 |
50 |
83 |
43 |
241 |
215 |
192 |
229 |
125 |
184 |
140 |
114 |
163 |
64 |
92 |
240 |
68 |
239 |
33 |
132 |
177 |
151 |
111 |
156 |
62 |
90 |
76 |
40 |
252 |
208 |
199 |
231 |
257 |
51 |
256 |
32 |
97 |
78 |
47 |
245 |
219 |
196 |
224 |
130 |
175 |
144 |
108 |
167 |
55 |
258 |
34 |
289 |
264 |
31 |
30 |
29 |
28 |
27 |
152 |
223 |
36 |
265 |
266 |
267 |
268 |
269 |
20 |
1 |
153 |
288 |
287 |
286 |
13 |
12 |
11 |
10 |
8 |
7 |
6 |
5 |
276 |
275 |
274 |
273 |
281 |
P61
9 |
2 |
3 |
4 |
277 |
278 |
279 |
280 |
282 |
283 |
284 |
285 |
14 |
15 |
16 |
17 |
137 |
18 |
270 |
259 |
260 |
261 |
262 |
263 |
138 |
67 |
254 |
25 |
24 |
23 |
22 |
21 |
26 |
272 |
35 |
172 |
235 |
123 |
182 |
146 |
115 |
160 |
66 |
94 |
71 |
45 |
243 |
212 |
193 |
118 |
255 |
52 |
186 |
59 |
91 |
82 |
38 |
250 |
214 |
200 |
228 |
134 |
179 |
139 |
113 |
158 |
104 |
238 |
69 |
203 |
198 |
226 |
127 |
176 |
150 |
106 |
165 |
61 |
98 |
75 |
49 |
247 |
207 |
87 |
221 |
102 |
220 |
162 |
54 |
96 |
73 |
42 |
244 |
218 |
191 |
233 |
129 |
183 |
143 |
117 |
70 |
188 |
119 |
237 |
211 |
202 |
230 |
122 |
181 |
141 |
110 |
159 |
65 |
89 |
80 |
44 |
251 |
53 |
171 |
136 |
135 |
112 |
166 |
58 |
100 |
77 |
37 |
249 |
209 |
195 |
227 |
133 |
174 |
148 |
155 |
154 |
170 |
169 |
242 |
216 |
197 |
234 |
126 |
185 |
145 |
105 |
164 |
56 |
93 |
74 |
48 |
121 |
120 |
187 |
19 |
142 |
116 |
157 |
63 |
95 |
81 |
41 |
253 |
213 |
190 |
232 |
124 |
178 |
271 |
103 |
204 |
101 |
39 |
246 |
210 |
201 |
225 |
131 |
180 |
149 |
109 |
168 |
60 |
88 |
79 |
189 |
86 |
205 |
84 |
173 |
147 |
107 |
161 |
57 |
99 |
72 |
46 |
248 |
217 |
194 |
236 |
128 |
206 |
85 |
222 |
50 |
83 |
43 |
241 |
215 |
192 |
229 |
125 |
184 |
140 |
114 |
163 |
64 |
92 |
240 |
68 |
239 |
33 |
132 |
177 |
151 |
111 |
156 |
62 |
90 |
76 |
40 |
252 |
208 |
199 |
231 |
257 |
51 |
256 |
32 |
97 |
78 |
47 |
245 |
219 |
196 |
224 |
130 |
175 |
144 |
108 |
167 |
55 |
258 |
34 |
289 |
264 |
31 |
30 |
29 |
28 |
27 |
152 |
223 |
36 |
265 |
266 |
267 |
268 |
269 |
20 |
1 |
153 |
288 |
287 |
286 |
13 |
12 |
11 |
10 |
8 |
7 |
6 |
5 |
276 |
275 |
274 |
273 |
281 |
Attachment 12.8.73 shows for each of the patterns listed above
the first occurring Bordered Quadrant Magic Square for miscellaneous centre squares.
Case 3 P112, P115, P116, P119, P120, P126, P244
Also the patterns listed above will result in
Quadrant Magic Properties which are
invariant for variations of the outer border.
Quadrant Bordered Magic Squares, with Ultra Magic Centre Squares, can be constructed based on Semi Latin Borders as discussed in Section 17.2.4 and a method comparable with the one described in Exhibit P38.
Centre Squares as described for Case 1 above (ref. Attachment 12.8.71) will result in two way
Quadrant Bordered Magic Squares e.g. (P112/P61).
Attachment 12.8.75 shows for each of the patterns listed above
the first occurring Bordered Quadrant Magic Square for miscellaneous centre squares.
12.9.8 Summary
The obtained results regarding the miscellaneous types of order 17 Quadrant Magic Squares as deducted and discussed in previous sections are summarised in following table:
|