23.0 Magic Squares, Higher Order, Composed
23.1 Introduction, Misc. Sub Squares (1)
In Section 9.9.1 a set of 9 Magic Squares of the 3th order was found,
each containing 9 consecutive integers, with corresponding Magic Sum.
Based on this set of 3th order Magic Squares, Magic Squares of the 9th order could be constructed.
Next sections show comparable sets of (Pan) Magic Squares, enabling the construction of
12th,
15th,
16th,
18th
and a few higher order Magic Squares.
23.2 Magic Squares (12 x 12)
For 12th order Magic Squares, following set of 16 Magic Squares - each containing 9 consecutive integers -
with corresponding Magic Sum, can be found:
B
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
C
105 |
100 |
107 |
106 |
104 |
102 |
101 |
108 |
103 |
|
114 |
109 |
116 |
115 |
113 |
111 |
110 |
117 |
112 |
|
24 |
19 |
26 |
25 |
23 |
21 |
20 |
27 |
22 |
|
51 |
46 |
53 |
52 |
50 |
48 |
47 |
54 |
49 |
|
60 |
55 |
62 |
61 |
59 |
57 |
56 |
63 |
58 |
|
15 |
10 |
17 |
16 |
14 |
12 |
11 |
18 |
13 |
|
141 |
136 |
143 |
142 |
140 |
138 |
137 |
144 |
139 |
|
78 |
73 |
80 |
79 |
77 |
75 |
74 |
81 |
76 |
|
123 |
118 |
125 |
124 |
122 |
120 |
119 |
126 |
121 |
|
96 |
91 |
98 |
97 |
95 |
93 |
92 |
99 |
94 |
|
42 |
37 |
44 |
43 |
41 |
39 |
38 |
45 |
40 |
|
33 |
28 |
35 |
34 |
32 |
30 |
29 |
36 |
31 |
|
|
69 |
64 |
71 |
70 |
68 |
66 |
65 |
72 |
67 |
|
87 |
82 |
89 |
88 |
86 |
84 |
83 |
90 |
85 |
|
132 |
127 |
134 |
133 |
131 |
129 |
128 |
135 |
130 |
|
|
MC's
312 |
339 |
69 |
150 |
177 |
42 |
420 |
231 |
366 |
285 |
123 |
96 |
15 |
204 |
258 |
393 |
|
With 8 possible squares for each square Ci (i = 1 ... 16), the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 384 * 816 = 1,08 1017
for Pan Magic Square B;
or 7040 * 816 = 1,98 1018
for Simple Magic Square B.
It can be noticed that if B is Associated, the resulting square C will be Associated as well.
Alternatively, following set of 9 Magic Squares - each containing 16 consecutive integers -
with corresponding Magic Sum, can be found:
B
|
C
60 |
61 |
51 |
54 |
55 |
50 |
64 |
57 |
62 |
59 |
53 |
52 |
49 |
56 |
58 |
63 |
|
140 |
141 |
131 |
134 |
135 |
130 |
144 |
137 |
142 |
139 |
133 |
132 |
129 |
136 |
138 |
143 |
|
28 |
29 |
19 |
22 |
23 |
18 |
32 |
25 |
30 |
27 |
21 |
20 |
17 |
24 |
26 |
31 |
|
44 |
45 |
35 |
38 |
39 |
34 |
48 |
41 |
46 |
43 |
37 |
36 |
33 |
40 |
42 |
47 |
|
76 |
77 |
67 |
70 |
71 |
66 |
80 |
73 |
78 |
75 |
69 |
68 |
65 |
72 |
74 |
79 |
|
108 |
109 |
99 |
102 |
103 |
98 |
112 |
105 |
110 |
107 |
101 |
100 |
97 |
104 |
106 |
111 |
|
124 |
125 |
115 |
118 |
119 |
114 |
128 |
121 |
126 |
123 |
117 |
116 |
113 |
120 |
122 |
127 |
|
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
92 |
93 |
83 |
86 |
87 |
82 |
96 |
89 |
94 |
91 |
85 |
84 |
81 |
88 |
90 |
95 |
|
|
MC's
226 |
546 |
98 |
162 |
290 |
418 |
482 |
34 |
354 |
|
With 8 possible squares for square B, the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 8 * 3849 = 1,45 1024
for Pan Magic Squares Ci (i = 1 ... 9);
or 8 * 70409 = 3,40 1035
for Simple Magic Squares Ci (i = 1 ... 9).
It can be noticed that if Ci is Associated, the resulting square C will be Associated as well.
23.3 Magic Squares (15 x 15)
For 15th order Magic Squares, following set of 25 Magic Squares - each containing 9 consecutive integers -
with corresponding Magic Sum, can be found:
B
12 |
6 |
5 |
24 |
18 |
4 |
23 |
17 |
11 |
10 |
16 |
15 |
9 |
3 |
22 |
8 |
2 |
21 |
20 |
14 |
25 |
19 |
13 |
7 |
1 |
|
MC's
312 |
150 |
123 |
636 |
474 |
96 |
609 |
447 |
285 |
258 |
420 |
393 |
231 |
69 |
582 |
204 |
42 |
555 |
528 |
366 |
663 |
501 |
339 |
177 |
15 |
|
C
|
|
105 |
100 |
107 |
106 |
104 |
102 |
101 |
108 |
103 |
|
51 |
46 |
53 |
52 |
50 |
48 |
47 |
54 |
49 |
|
42 |
37 |
44 |
43 |
41 |
39 |
38 |
45 |
40 |
|
213 |
208 |
215 |
214 |
212 |
210 |
209 |
216 |
211 |
|
159 |
154 |
161 |
160 |
158 |
156 |
155 |
162 |
157 |
|
33 |
28 |
35 |
34 |
32 |
30 |
29 |
36 |
31 |
|
204 |
199 |
206 |
205 |
203 |
201 |
200 |
207 |
202 |
|
150 |
145 |
152 |
151 |
149 |
147 |
146 |
153 |
148 |
|
96 |
91 |
98 |
97 |
95 |
93 |
92 |
99 |
94 |
|
87 |
82 |
89 |
88 |
86 |
84 |
83 |
90 |
85 |
|
141 |
136 |
143 |
142 |
140 |
138 |
137 |
144 |
139 |
|
132 |
127 |
134 |
133 |
131 |
129 |
128 |
135 |
130 |
|
78 |
73 |
80 |
79 |
77 |
75 |
74 |
81 |
76 |
|
24 |
19 |
26 |
25 |
23 |
21 |
20 |
27 |
22 |
|
195 |
190 |
197 |
196 |
194 |
192 |
191 |
198 |
193 |
|
69 |
64 |
71 |
70 |
68 |
66 |
65 |
72 |
67 |
|
15 |
10 |
17 |
16 |
14 |
12 |
11 |
18 |
13 |
|
186 |
181 |
188 |
187 |
185 |
183 |
182 |
189 |
184 |
|
177 |
172 |
179 |
178 |
176 |
174 |
173 |
180 |
175 |
|
123 |
118 |
125 |
124 |
122 |
120 |
119 |
126 |
121 |
|
222 |
217 |
224 |
223 |
221 |
219 |
218 |
225 |
220 |
|
168 |
163 |
170 |
169 |
167 |
165 |
164 |
171 |
166 |
|
114 |
109 |
116 |
115 |
113 |
111 |
110 |
117 |
112 |
|
60 |
55 |
62 |
61 |
59 |
57 |
56 |
63 |
58 |
|
|
With 8 possible squares for each square Ci (i = 1 ... 25),
and 28800 possible squares for Pan Magic Square B,
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
28800 * 825 = 1,09 1027.
Att 18.4.01 Sht. 1, provides some additional examples of order 15 Magic Squares, composed of 25 order 3 Sub Squares for miscellaneous types Square B.
For enumeration base reference is made to Section 5.8.
Alternatively, following set of 9 Magic Squares - each containing 25 consecutive integers -
with corresponding Magic Sum, can be found:
B
|
MC's
440 |
1065 |
190 |
315 |
565 |
815 |
940 |
65 |
690 |
|
C
|
|
87 |
81 |
80 |
99 |
93 |
79 |
98 |
92 |
86 |
85 |
91 |
90 |
84 |
78 |
97 |
83 |
77 |
96 |
95 |
89 |
100 |
94 |
88 |
82 |
76 |
|
212 |
206 |
205 |
224 |
218 |
204 |
223 |
217 |
211 |
210 |
216 |
215 |
209 |
203 |
222 |
208 |
202 |
221 |
220 |
214 |
225 |
219 |
213 |
207 |
201 |
|
37 |
31 |
30 |
49 |
43 |
29 |
48 |
42 |
36 |
35 |
41 |
40 |
34 |
28 |
47 |
33 |
27 |
46 |
45 |
39 |
50 |
44 |
38 |
32 |
26 |
|
62 |
56 |
55 |
74 |
68 |
54 |
73 |
67 |
61 |
60 |
66 |
65 |
59 |
53 |
72 |
58 |
52 |
71 |
70 |
64 |
75 |
69 |
63 |
57 |
51 |
|
112 |
106 |
105 |
124 |
118 |
104 |
123 |
117 |
111 |
110 |
116 |
115 |
109 |
103 |
122 |
108 |
102 |
121 |
200 |
114 |
125 |
119 |
113 |
107 |
101 |
|
162 |
156 |
155 |
174 |
168 |
154 |
173 |
167 |
161 |
160 |
166 |
165 |
159 |
153 |
172 |
158 |
152 |
171 |
170 |
164 |
175 |
169 |
163 |
157 |
151 |
|
187 |
181 |
180 |
199 |
193 |
179 |
198 |
192 |
186 |
185 |
191 |
190 |
184 |
178 |
197 |
183 |
177 |
196 |
195 |
189 |
200 |
194 |
188 |
182 |
176 |
|
12 |
6 |
5 |
24 |
18 |
4 |
23 |
17 |
11 |
10 |
16 |
15 |
9 |
3 |
22 |
8 |
2 |
21 |
20 |
14 |
25 |
19 |
13 |
7 |
1 |
|
137 |
131 |
130 |
149 |
143 |
129 |
148 |
142 |
136 |
135 |
141 |
140 |
134 |
128 |
147 |
133 |
127 |
146 |
145 |
139 |
150 |
144 |
138 |
132 |
126 |
|
With 8 possible squares for square B
and 28800 possible squares for each Pan Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
8 * 288009 = 1,09 1041.
Att 18.4.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of 9 order 5 Sub Squares for miscellaneous types Square C.
For enumeration base reference is made to Section 5.8.
23.4 Magic Squares (16 x 16)
For 16th order Magic Squares, following set of 16 (Pan) Magic Squares - each containing 16 consecutive integers -
with corresponding Magic Sum, can be found:
B
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
MC's
738 |
802 |
162 |
354 |
418 |
98 |
994 |
546 |
866 |
674 |
290 |
226 |
34 |
482 |
610 |
930 |
|
C
|
|
181 |
180 |
190 |
187 |
186 |
191 |
177 |
184 |
179 |
182 |
188 |
189 |
192 |
185 |
183 |
178 |
|
197 |
196 |
206 |
203 |
202 |
207 |
193 |
200 |
195 |
198 |
204 |
205 |
208 |
201 |
199 |
194 |
|
37 |
36 |
46 |
43 |
42 |
47 |
33 |
40 |
35 |
38 |
44 |
45 |
48 |
41 |
39 |
34 |
|
85 |
84 |
94 |
91 |
90 |
95 |
81 |
88 |
83 |
86 |
92 |
93 |
96 |
89 |
87 |
82 |
|
101 |
100 |
110 |
107 |
106 |
111 |
97 |
104 |
99 |
102 |
108 |
109 |
112 |
105 |
103 |
98 |
|
21 |
20 |
30 |
27 |
26 |
31 |
17 |
24 |
19 |
22 |
28 |
29 |
32 |
25 |
23 |
18 |
|
245 |
244 |
254 |
251 |
250 |
255 |
241 |
248 |
243 |
246 |
252 |
253 |
256 |
249 |
247 |
242 |
|
133 |
132 |
142 |
139 |
138 |
143 |
129 |
136 |
131 |
134 |
140 |
141 |
144 |
137 |
135 |
130 |
|
213 |
212 |
222 |
219 |
218 |
223 |
209 |
216 |
211 |
214 |
220 |
221 |
224 |
217 |
215 |
210 |
|
165 |
164 |
174 |
171 |
170 |
175 |
161 |
168 |
163 |
166 |
172 |
173 |
176 |
169 |
167 |
162 |
|
69 |
68 |
78 |
75 |
74 |
79 |
65 |
72 |
67 |
70 |
76 |
77 |
80 |
73 |
71 |
66 |
|
53 |
52 |
62 |
59 |
58 |
63 |
49 |
56 |
51 |
54 |
60 |
61 |
64 |
57 |
55 |
50 |
|
5 |
4 |
14 |
11 |
10 |
15 |
1 |
8 |
3 |
6 |
12 |
13 |
16 |
9 |
7 |
2 |
|
117 |
116 |
126 |
123 |
122 |
127 |
113 |
120 |
115 |
118 |
124 |
125 |
128 |
121 |
119 |
114 |
|
149 |
148 |
158 |
155 |
154 |
159 |
145 |
152 |
147 |
150 |
156 |
157 |
160 |
153 |
151 |
146 |
|
229 |
228 |
238 |
235 |
234 |
239 |
225 |
232 |
227 |
230 |
236 |
237 |
240 |
233 |
231 |
226 |
|
The resulting number of Magic Squares of the 16th order with Magic Sum s16 = 2056 can be determined for following 4 Cases:
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
384 * 38416 =
8,58 1043
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
7040 * 38416 =
1,57 1045
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
384 * 704016 =
1,40 1064
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
7040 * 704016 =
2,56 1065
If B and Ci are Pan Magic, the resulting square C will be Pan Magic as well.
If B and Ci are Associated, the resulting square C will be Associated as well.
23.5 Magic Squares (18 x 18)
For 18th order Magic Squares, following set of 36 Magic Squares - each containing 9 consecutive integers -
with corresponding Magic Sum, can be found:
B
26 |
35 |
1 |
19 |
6 |
24 |
17 |
8 |
28 |
10 |
33 |
15 |
30 |
12 |
14 |
23 |
25 |
7 |
3 |
21 |
5 |
32 |
34 |
16 |
31 |
22 |
27 |
9 |
2 |
20 |
4 |
13 |
36 |
18 |
11 |
29 |
|
MC's
690 |
933 |
15 |
501 |
150 |
636 |
447 |
204 |
744 |
258 |
879 |
393 |
798 |
312 |
366 |
609 |
663 |
177 |
69 |
555 |
123 |
852 |
906 |
420 |
825 |
582 |
717 |
231 |
42 |
528 |
96 |
339 |
960 |
474 |
285 |
771 |
|
C
|
|
231 |
226 |
233 |
232 |
230 |
228 |
227 |
234 |
229 |
|
312 |
307 |
314 |
313 |
311 |
309 |
308 |
315 |
310 |
|
|
168 |
163 |
170 |
169 |
167 |
165 |
164 |
171 |
166 |
|
51 |
46 |
53 |
52 |
50 |
48 |
47 |
54 |
49 |
|
213 |
208 |
215 |
214 |
212 |
210 |
209 |
216 |
211 |
|
150 |
145 |
152 |
151 |
149 |
147 |
146 |
153 |
148 |
|
69 |
64 |
71 |
70 |
68 |
66 |
65 |
72 |
67 |
|
249 |
244 |
251 |
250 |
248 |
246 |
245 |
252 |
247 |
|
87 |
82 |
89 |
88 |
86 |
84 |
83 |
90 |
85 |
|
294 |
289 |
296 |
295 |
293 |
291 |
290 |
297 |
292 |
|
132 |
127 |
134 |
133 |
131 |
129 |
128 |
135 |
130 |
|
267 |
262 |
269 |
268 |
266 |
264 |
263 |
270 |
265 |
|
105 |
100 |
107 |
106 |
104 |
102 |
101 |
108 |
103 |
|
123 |
118 |
125 |
124 |
122 |
120 |
119 |
126 |
121 |
|
204 |
199 |
206 |
205 |
203 |
201 |
200 |
207 |
202 |
|
222 |
217 |
224 |
223 |
221 |
219 |
218 |
225 |
220 |
|
60 |
55 |
62 |
61 |
59 |
57 |
56 |
63 |
58 |
|
24 |
19 |
26 |
25 |
23 |
21 |
20 |
27 |
22 |
|
186 |
181 |
188 |
187 |
185 |
183 |
182 |
189 |
184 |
|
42 |
37 |
44 |
43 |
41 |
39 |
38 |
45 |
40 |
|
285 |
280 |
287 |
286 |
284 |
282 |
281 |
288 |
283 |
|
303 |
298 |
305 |
304 |
302 |
300 |
299 |
306 |
301 |
|
141 |
136 |
143 |
142 |
140 |
138 |
137 |
144 |
139 |
|
276 |
271 |
278 |
277 |
275 |
273 |
272 |
279 |
274 |
|
195 |
190 |
197 |
196 |
194 |
192 |
191 |
198 |
193 |
|
240 |
235 |
242 |
241 |
239 |
237 |
236 |
243 |
238 |
|
78 |
73 |
80 |
79 |
77 |
75 |
74 |
81 |
76 |
|
15 |
10 |
17 |
16 |
14 |
12 |
11 |
18 |
13 |
|
177 |
172 |
179 |
178 |
176 |
174 |
173 |
180 |
175 |
|
33 |
28 |
35 |
34 |
32 |
30 |
29 |
36 |
31 |
|
114 |
109 |
116 |
115 |
113 |
111 |
110 |
117 |
112 |
|
321 |
316 |
323 |
322 |
320 |
318 |
317 |
324 |
319 |
|
159 |
154 |
161 |
160 |
158 |
156 |
155 |
162 |
157 |
|
96 |
91 |
98 |
97 |
95 |
93 |
92 |
99 |
94 |
|
258 |
253 |
260 |
259 |
257 |
255 |
254 |
261 |
256 |
|
With 8 possible squares for each square Ci (i = 1 ... 36),
and 1.740.800 possible squares (Medjig Solutions) for Magic Square B
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
1.740.800 * 836 = 6,58 1028.
Alternatively, following set of 9 Magic Squares - each containing 36 consecutive integers -
with corresponding Magic Sum, can be found:
B
|
MC's
759 |
1839 |
327 |
543 |
975 |
1407 |
1623 |
111 |
1191 |
|
C
|
|
134 |
143 |
109 |
127 |
114 |
132 |
125 |
116 |
136 |
118 |
141 |
123 |
138 |
120 |
122 |
131 |
133 |
115 |
111 |
129 |
113 |
140 |
142 |
124 |
139 |
130 |
135 |
117 |
110 |
128 |
112 |
121 |
144 |
126 |
119 |
137 |
|
314 |
323 |
289 |
307 |
294 |
312 |
305 |
296 |
316 |
298 |
321 |
303 |
318 |
300 |
302 |
311 |
313 |
295 |
291 |
309 |
293 |
320 |
322 |
304 |
319 |
310 |
315 |
297 |
290 |
308 |
292 |
301 |
324 |
306 |
299 |
317 |
|
62 |
71 |
37 |
55 |
42 |
60 |
53 |
44 |
64 |
46 |
69 |
51 |
66 |
48 |
50 |
59 |
61 |
43 |
39 |
57 |
41 |
68 |
70 |
52 |
67 |
58 |
63 |
45 |
38 |
56 |
40 |
49 |
72 |
54 |
47 |
65 |
|
98 |
107 |
73 |
91 |
78 |
96 |
89 |
80 |
100 |
82 |
105 |
87 |
102 |
84 |
86 |
95 |
97 |
79 |
75 |
93 |
77 |
104 |
106 |
88 |
103 |
94 |
99 |
81 |
74 |
92 |
76 |
85 |
108 |
90 |
83 |
101 |
|
170 |
179 |
145 |
163 |
150 |
168 |
161 |
152 |
172 |
154 |
177 |
159 |
174 |
156 |
158 |
167 |
169 |
151 |
147 |
165 |
149 |
176 |
178 |
160 |
175 |
166 |
171 |
153 |
146 |
164 |
148 |
157 |
180 |
162 |
155 |
173 |
|
242 |
251 |
217 |
235 |
222 |
240 |
233 |
224 |
244 |
226 |
249 |
231 |
246 |
228 |
230 |
239 |
241 |
223 |
219 |
237 |
221 |
248 |
250 |
232 |
247 |
238 |
243 |
225 |
218 |
236 |
220 |
229 |
252 |
234 |
227 |
245 |
|
278 |
287 |
253 |
271 |
258 |
276 |
269 |
260 |
280 |
262 |
285 |
267 |
282 |
264 |
266 |
275 |
277 |
259 |
255 |
273 |
257 |
284 |
286 |
268 |
283 |
274 |
279 |
261 |
254 |
272 |
256 |
265 |
288 |
270 |
263 |
281 |
|
26 |
35 |
1 |
19 |
6 |
24 |
17 |
8 |
28 |
10 |
33 |
15 |
30 |
12 |
14 |
23 |
25 |
7 |
3 |
21 |
5 |
32 |
34 |
16 |
31 |
22 |
27 |
9 |
2 |
20 |
4 |
13 |
36 |
18 |
11 |
29 |
|
206 |
215 |
181 |
199 |
186 |
204 |
197 |
188 |
208 |
190 |
213 |
195 |
210 |
192 |
194 |
203 |
205 |
187 |
183 |
201 |
185 |
212 |
214 |
196 |
211 |
202 |
207 |
189 |
182 |
200 |
184 |
193 |
216 |
198 |
191 |
209 |
|
With 8 possible squares for square B
and 1.740.800 possible squares (Medjig Solutions) for each Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
8 * 1.740.8009 = 1,17 1057.
23.6 Magic Squares, Misc. Orders
Magic Squares composed out of Sub Squares with different Magic Sums are also referred to as Inlaid Magic Squares.
A few more examples of miscellaneous types of Composed Magic Squares are summarized in following table:
|