24.0 Magic Squares, Higher Order, Composed
24.1 Introduction, Misc. Sub Squares (2)
In Section 9.9.2
Magic Squares of the 9th order could be constructed
based on a set of 9 Magic Squares of the 3th order,
each containing 9 non-consecutive integers, with corresponding Magic Sum.
Next sections show comparable sets of (Pan) Magic Squares, enabling the construction of
12th,
15th,
16th,
18th
and a few higher order Magic Squares.
24.2 Magic Squares (12 x 12)
For 12th order Magic Squares, following set of 16 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
|
A1
|
|
A2
48 |
128 |
16 |
32 |
64 |
96 |
112 |
0 |
80 |
|
B
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
C
60 |
140 |
28 |
44 |
76 |
108 |
124 |
12 |
92 |
|
61 |
141 |
29 |
45 |
77 |
109 |
125 |
13 |
93 |
|
51 |
131 |
19 |
35 |
67 |
99 |
115 |
3 |
83 |
|
54 |
134 |
22 |
38 |
70 |
102 |
118 |
6 |
86 |
|
55 |
135 |
23 |
39 |
71 |
103 |
119 |
7 |
87 |
|
50 |
130 |
18 |
34 |
66 |
98 |
114 |
2 |
82 |
|
64 |
144 |
32 |
48 |
80 |
112 |
128 |
16 |
96 |
|
57 |
137 |
25 |
41 |
73 |
105 |
121 |
9 |
89 |
|
62 |
142 |
30 |
46 |
78 |
110 |
126 |
14 |
94 |
|
59 |
139 |
27 |
43 |
75 |
107 |
123 |
11 |
91 |
|
53 |
133 |
21 |
37 |
69 |
101 |
117 |
5 |
85 |
|
52 |
132 |
20 |
36 |
68 |
100 |
116 |
4 |
84 |
|
49 |
129 |
17 |
33 |
65 |
97 |
113 |
1 |
81 |
|
56 |
136 |
24 |
40 |
72 |
104 |
120 |
8 |
88 |
|
58 |
138 |
26 |
42 |
74 |
106 |
122 |
10 |
90 |
|
63 |
143 |
31 |
47 |
79 |
111 |
127 |
15 |
95 |
|
|
MC's
228 |
231 |
201 |
210 |
213 |
198 |
240 |
219 |
234 |
225 |
207 |
204 |
195 |
216 |
222 |
237 |
|
With 8 possible squares for each square Ci (i = 1 ... 16), the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 384 * 816 = 1,08 1017
for Pan Magic Square B;
or 7040 * 816 = 1,98 1018
for Simple Magic Square B.
It can be noticed that if B is Associated, the resulting square C will be Associated as well.
Alternatively, following set of 9 Magic Squares
- each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:
|
A1
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
|
A2
99 |
108 |
18 |
45 |
54 |
9 |
135 |
72 |
117 |
90 |
36 |
27 |
0 |
63 |
81 |
126 |
|
B
|
C
103 |
112 |
22 |
49 |
58 |
13 |
139 |
76 |
121 |
94 |
40 |
31 |
4 |
67 |
85 |
130 |
|
108 |
117 |
27 |
54 |
63 |
18 |
144 |
81 |
126 |
99 |
45 |
36 |
9 |
72 |
90 |
135 |
|
101 |
110 |
20 |
47 |
56 |
11 |
137 |
74 |
119 |
92 |
38 |
29 |
2 |
65 |
83 |
128 |
|
102 |
111 |
21 |
48 |
57 |
12 |
138 |
75 |
120 |
93 |
39 |
30 |
3 |
66 |
84 |
129 |
|
104 |
113 |
23 |
50 |
59 |
14 |
140 |
77 |
122 |
95 |
41 |
32 |
5 |
68 |
86 |
131 |
|
106 |
115 |
25 |
52 |
61 |
16 |
142 |
79 |
124 |
97 |
43 |
34 |
7 |
70 |
88 |
133 |
|
107 |
116 |
26 |
53 |
62 |
17 |
143 |
80 |
125 |
98 |
44 |
35 |
8 |
71 |
89 |
134 |
|
100 |
109 |
19 |
46 |
55 |
10 |
136 |
73 |
118 |
91 |
37 |
28 |
1 |
64 |
82 |
127 |
|
105 |
114 |
24 |
51 |
60 |
15 |
141 |
78 |
123 |
96 |
42 |
33 |
6 |
69 |
87 |
132 |
|
|
MC's
286 |
306 |
278 |
282 |
290 |
298 |
302 |
274 |
294 |
|
With 8 possible squares for square B, the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 8 * 3849 = 1,45 1024
for Pan Magic Squares Ci (i = 1 ... 9);
or 8 * 70409 = 3,40 1035
for Simple Magic Squares Ci (i = 1 ... 9).
It can be noticed that if Ci is Associated, the resulting square C will be Associated as well.
24.3 Magic Squares (15 x 15)
For 15th order Magic Squares,
following set of 25 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
B
12 |
6 |
5 |
24 |
18 |
4 |
23 |
17 |
11 |
10 |
16 |
15 |
9 |
3 |
22 |
8 |
2 |
21 |
20 |
14 |
25 |
19 |
13 |
7 |
1 |
|
A1
|
A2
75 |
200 |
25 |
50 |
100 |
150 |
175 |
0 |
125 |
|
MC's
336 |
318 |
315 |
372 |
354 |
312 |
369 |
351 |
333 |
330 |
348 |
345 |
327 |
309 |
366 |
324 |
306 |
363 |
360 |
342 |
375 |
357 |
339 |
321 |
303 |
|
C
87 |
212 |
37 |
62 |
112 |
162 |
187 |
12 |
137 |
|
81 |
206 |
31 |
56 |
106 |
156 |
181 |
6 |
131 |
|
80 |
205 |
30 |
55 |
105 |
155 |
180 |
5 |
130 |
|
99 |
224 |
49 |
74 |
124 |
174 |
199 |
24 |
149 |
|
93 |
218 |
43 |
68 |
118 |
168 |
193 |
18 |
143 |
|
79 |
204 |
29 |
54 |
104 |
154 |
179 |
4 |
129 |
|
98 |
223 |
48 |
73 |
123 |
173 |
198 |
23 |
148 |
|
92 |
217 |
42 |
67 |
117 |
167 |
192 |
17 |
142 |
|
86 |
211 |
36 |
61 |
111 |
161 |
186 |
11 |
136 |
|
85 |
210 |
35 |
60 |
110 |
160 |
185 |
10 |
135 |
|
91 |
216 |
41 |
66 |
116 |
166 |
191 |
16 |
141 |
|
90 |
215 |
40 |
65 |
115 |
165 |
190 |
15 |
140 |
|
84 |
209 |
34 |
59 |
109 |
159 |
184 |
9 |
134 |
|
78 |
203 |
28 |
53 |
103 |
153 |
178 |
3 |
128 |
|
97 |
222 |
47 |
72 |
122 |
172 |
197 |
22 |
147 |
|
83 |
208 |
33 |
58 |
108 |
158 |
183 |
8 |
133 |
|
77 |
202 |
27 |
52 |
102 |
152 |
177 |
2 |
127 |
|
96 |
221 |
46 |
71 |
121 |
171 |
196 |
21 |
146 |
|
95 |
220 |
45 |
70 |
120 |
170 |
195 |
20 |
145 |
|
89 |
214 |
39 |
64 |
114 |
164 |
189 |
14 |
139 |
|
100 |
225 |
50 |
75 |
125 |
175 |
200 |
25 |
150 |
|
94 |
219 |
44 |
69 |
119 |
169 |
194 |
19 |
144 |
|
88 |
213 |
38 |
63 |
113 |
163 |
188 |
13 |
138 |
|
82 |
207 |
32 |
57 |
107 |
157 |
182 |
7 |
132 |
|
76 |
201 |
26 |
51 |
101 |
151 |
176 |
1 |
126 |
|
With 8 possible squares for each square Ci (i = 1 ... 25),
and 28800 possible squares for Pan Magic Square B,
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
28800 * 825 = 1,09 1027.
Att 24.6.01 Sht. 1, provides some additional examples of order 15 Magic Squares, composed of 25 order 3 Sub Squares for miscellaneous types Square B.
For enumeration base reference is made to Section 5.8.
Alternatively, following set of 9 Magic Squares - each containing 25 non-consecutive integers - with corresponding Magic Sum, can be found:
B
|
A1
12 |
6 |
5 |
24 |
18 |
4 |
23 |
17 |
11 |
10 |
16 |
15 |
9 |
3 |
22 |
8 |
2 |
21 |
20 |
14 |
25 |
19 |
13 |
7 |
1 |
|
A2
99 |
45 |
36 |
207 |
153 |
27 |
198 |
144 |
90 |
81 |
135 |
126 |
72 |
18 |
189 |
63 |
9 |
180 |
171 |
117 |
216 |
162 |
108 |
54 |
0 |
|
MC's
560 |
585 |
550 |
555 |
565 |
575 |
580 |
545 |
570 |
|
C
103 |
49 |
40 |
211 |
157 |
31 |
202 |
148 |
94 |
85 |
139 |
130 |
76 |
22 |
193 |
67 |
13 |
184 |
175 |
121 |
220 |
166 |
112 |
58 |
4 |
|
108 |
54 |
45 |
216 |
162 |
36 |
207 |
153 |
99 |
90 |
144 |
135 |
81 |
27 |
198 |
72 |
18 |
189 |
180 |
126 |
225 |
171 |
117 |
63 |
9 |
|
101 |
47 |
38 |
209 |
155 |
29 |
200 |
146 |
92 |
83 |
137 |
128 |
74 |
20 |
191 |
65 |
11 |
182 |
173 |
119 |
218 |
164 |
110 |
56 |
2 |
|
102 |
48 |
39 |
210 |
156 |
30 |
201 |
147 |
93 |
84 |
138 |
129 |
75 |
21 |
192 |
66 |
12 |
183 |
174 |
120 |
219 |
165 |
111 |
57 |
3 |
|
104 |
50 |
41 |
212 |
158 |
32 |
203 |
149 |
95 |
86 |
140 |
131 |
77 |
23 |
194 |
68 |
14 |
185 |
176 |
122 |
221 |
167 |
113 |
59 |
5 |
|
106 |
52 |
43 |
214 |
160 |
34 |
205 |
151 |
97 |
88 |
142 |
133 |
79 |
25 |
196 |
70 |
16 |
187 |
178 |
124 |
223 |
169 |
115 |
61 |
7 |
|
107 |
53 |
44 |
215 |
161 |
35 |
206 |
152 |
98 |
89 |
143 |
134 |
80 |
26 |
197 |
71 |
17 |
188 |
179 |
125 |
224 |
170 |
116 |
62 |
8 |
|
100 |
46 |
37 |
208 |
154 |
28 |
199 |
145 |
91 |
82 |
136 |
127 |
73 |
19 |
190 |
64 |
10 |
181 |
172 |
118 |
217 |
163 |
109 |
55 |
1 |
|
105 |
51 |
42 |
213 |
159 |
33 |
204 |
150 |
96 |
87 |
141 |
132 |
78 |
24 |
195 |
69 |
15 |
186 |
177 |
123 |
222 |
168 |
114 |
60 |
6 |
|
With 8 possible squares for square B
and 28800 possible squares for each Pan Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
8 * 288009 = 1,09 1041.
Att 24.6.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of 9 order 5 Sub Squares for miscellaneous types Square C.
For enumeration base reference is made to Section 5.8.
24.4 Magic Squares (16 x 16)
For 16th order Magic Squares, following set of 16 (Pan) Magic Squares - each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:
A1
5 |
4 |
14 |
11 |
10 |
15 |
1 |
8 |
3 |
6 |
12 |
13 |
16 |
9 |
7 |
2 |
|
A2
64 |
48 |
208 |
160 |
144 |
224 |
0 |
112 |
32 |
80 |
176 |
192 |
240 |
128 |
96 |
16 |
|
B
12 |
13 |
3 |
6 |
7 |
2 |
16 |
9 |
14 |
11 |
5 |
4 |
1 |
8 |
10 |
15 |
|
MC's
528 |
532 |
492 |
504 |
508 |
488 |
544 |
516 |
536 |
524 |
500 |
496 |
484 |
512 |
520 |
540 |
|
C
76 |
60 |
220 |
172 |
156 |
236 |
12 |
124 |
44 |
92 |
188 |
204 |
252 |
140 |
108 |
28 |
|
77 |
61 |
221 |
173 |
157 |
237 |
13 |
125 |
45 |
93 |
189 |
205 |
253 |
141 |
109 |
29 |
|
67 |
51 |
211 |
163 |
147 |
227 |
3 |
115 |
35 |
83 |
179 |
195 |
243 |
131 |
99 |
19 |
|
70 |
54 |
214 |
166 |
150 |
230 |
6 |
118 |
38 |
86 |
182 |
198 |
246 |
134 |
102 |
22 |
|
71 |
55 |
215 |
167 |
151 |
231 |
7 |
119 |
39 |
87 |
183 |
199 |
247 |
135 |
103 |
23 |
|
66 |
50 |
210 |
162 |
146 |
226 |
2 |
114 |
34 |
82 |
178 |
194 |
242 |
130 |
98 |
18 |
|
80 |
64 |
224 |
176 |
160 |
240 |
16 |
128 |
48 |
96 |
192 |
208 |
256 |
144 |
112 |
32 |
|
73 |
57 |
217 |
169 |
153 |
233 |
9 |
121 |
41 |
89 |
185 |
201 |
249 |
137 |
105 |
25 |
|
78 |
62 |
222 |
174 |
158 |
238 |
14 |
126 |
46 |
94 |
190 |
206 |
254 |
142 |
110 |
30 |
|
75 |
59 |
219 |
171 |
155 |
235 |
11 |
123 |
43 |
91 |
187 |
203 |
251 |
139 |
107 |
27 |
|
69 |
53 |
213 |
165 |
149 |
229 |
5 |
117 |
37 |
85 |
181 |
197 |
245 |
133 |
101 |
21 |
|
68 |
52 |
212 |
164 |
148 |
228 |
4 |
116 |
36 |
84 |
180 |
196 |
244 |
132 |
100 |
20 |
|
65 |
49 |
209 |
161 |
145 |
225 |
1 |
113 |
33 |
81 |
177 |
193 |
241 |
129 |
97 |
17 |
|
72 |
56 |
216 |
168 |
152 |
232 |
8 |
120 |
40 |
88 |
184 |
200 |
248 |
136 |
104 |
24 |
|
74 |
58 |
218 |
170 |
154 |
234 |
10 |
122 |
42 |
90 |
186 |
202 |
250 |
138 |
106 |
26 |
|
79 |
63 |
223 |
175 |
159 |
239 |
15 |
127 |
47 |
95 |
191 |
207 |
255 |
143 |
111 |
31 |
|
The resulting number of Magic Squares of the 16th order with Magic Sum s16 = 2056 can be determined for following 4 Cases:
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
384 * 38416 =
8,58 1043
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
7040 * 38416 =
1,57 1045
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
384 * 704016 =
1,40 1064
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
7040 * 704016 =
2,56 1065
If B and Ci are Pan Magic, the resulting square C will be Pan Magic as well.
If B and Ci are Associated, the resulting square C will be Associated as well.
24.5 Magic Squares (18 x 18)
For 18th order Magic Squares,
following set of 36 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
B
26 |
35 |
1 |
19 |
6 |
24 |
17 |
8 |
28 |
10 |
33 |
15 |
30 |
12 |
14 |
23 |
25 |
7 |
3 |
21 |
5 |
32 |
34 |
16 |
31 |
22 |
27 |
9 |
2 |
20 |
4 |
13 |
36 |
18 |
11 |
29 |
|
A1
|
A2
108 |
288 |
36 |
72 |
144 |
216 |
252 |
0 |
180 |
|
MC's
510 |
537 |
435 |
489 |
450 |
504 |
483 |
456 |
516 |
462 |
531 |
477 |
522 |
468 |
474 |
501 |
507 |
453 |
441 |
495 |
447 |
528 |
534 |
480 |
525 |
498 |
513 |
459 |
438 |
492 |
444 |
471 |
540 |
486 |
465 |
519 |
|
C
134 |
314 |
62 |
98 |
170 |
242 |
278 |
26 |
206 |
|
143 |
323 |
71 |
107 |
179 |
251 |
287 |
35 |
215 |
|
109 |
289 |
37 |
73 |
145 |
217 |
253 |
1 |
181 |
|
127 |
307 |
55 |
91 |
163 |
235 |
271 |
19 |
199 |
|
114 |
294 |
42 |
78 |
150 |
222 |
258 |
6 |
186 |
|
132 |
312 |
60 |
96 |
168 |
240 |
276 |
24 |
204 |
|
125 |
305 |
53 |
89 |
161 |
233 |
269 |
17 |
197 |
|
116 |
296 |
44 |
80 |
152 |
224 |
260 |
8 |
188 |
|
136 |
316 |
64 |
100 |
172 |
244 |
280 |
28 |
208 |
|
118 |
298 |
46 |
82 |
154 |
226 |
262 |
10 |
190 |
|
141 |
321 |
69 |
105 |
177 |
249 |
285 |
33 |
213 |
|
123 |
303 |
51 |
87 |
159 |
231 |
267 |
15 |
195 |
|
138 |
318 |
66 |
102 |
174 |
246 |
282 |
30 |
210 |
|
120 |
300 |
48 |
84 |
156 |
228 |
264 |
12 |
192 |
|
122 |
302 |
50 |
86 |
158 |
230 |
266 |
14 |
194 |
|
131 |
311 |
59 |
95 |
167 |
239 |
275 |
23 |
203 |
|
133 |
313 |
61 |
97 |
169 |
241 |
277 |
25 |
205 |
|
115 |
295 |
43 |
79 |
151 |
223 |
259 |
7 |
187 |
|
111 |
291 |
39 |
75 |
147 |
219 |
255 |
3 |
183 |
|
129 |
309 |
57 |
93 |
165 |
237 |
273 |
21 |
201 |
|
113 |
293 |
41 |
77 |
149 |
221 |
257 |
5 |
185 |
|
140 |
320 |
68 |
104 |
176 |
248 |
284 |
32 |
212 |
|
142 |
322 |
70 |
106 |
178 |
250 |
286 |
34 |
214 |
|
124 |
304 |
52 |
88 |
160 |
232 |
268 |
16 |
196 |
|
139 |
319 |
67 |
103 |
175 |
247 |
283 |
31 |
211 |
|
130 |
310 |
58 |
94 |
166 |
238 |
274 |
22 |
202 |
|
135 |
315 |
63 |
99 |
171 |
243 |
279 |
27 |
207 |
|
117 |
297 |
45 |
81 |
153 |
225 |
261 |
9 |
189 |
|
110 |
290 |
38 |
74 |
146 |
218 |
254 |
2 |
182 |
|
128 |
308 |
56 |
92 |
164 |
236 |
272 |
20 |
200 |
|
112 |
292 |
40 |
76 |
148 |
220 |
256 |
4 |
184 |
|
121 |
301 |
49 |
85 |
157 |
229 |
265 |
13 |
193 |
|
144 |
324 |
72 |
108 |
180 |
252 |
288 |
36 |
216 |
|
126 |
306 |
54 |
90 |
162 |
234 |
270 |
18 |
198 |
|
119 |
299 |
47 |
83 |
155 |
227 |
263 |
11 |
191 |
|
137 |
317 |
65 |
101 |
173 |
245 |
281 |
29 |
209 |
|
With 8 possible squares for each square Ci (i = 1 ... 36),
and 1.740.800 possible squares (Medjig Solutions) for Magic Square B
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
1.740.800 * 836 = 6,58 1028.
Alternatively, following set of 9 Magic Squares - each containing 36 non-consecutive integers - with corresponding Magic Sum, can be found:
B
|
A1
26 |
35 |
1 |
19 |
6 |
24 |
17 |
8 |
28 |
10 |
33 |
15 |
30 |
12 |
14 |
23 |
25 |
7 |
3 |
21 |
5 |
32 |
34 |
16 |
31 |
22 |
27 |
9 |
2 |
20 |
4 |
13 |
36 |
18 |
11 |
29 |
|
A2
225 |
306 |
0 |
162 |
45 |
207 |
144 |
63 |
243 |
81 |
288 |
126 |
261 |
99 |
117 |
198 |
216 |
54 |
18 |
180 |
36 |
279 |
297 |
135 |
270 |
189 |
234 |
72 |
9 |
171 |
27 |
108 |
315 |
153 |
90 |
252 |
|
MC's
969 |
999 |
957 |
963 |
975 |
987 |
993 |
951 |
981 |
|
C
229 |
310 |
4 |
166 |
49 |
211 |
148 |
67 |
247 |
85 |
292 |
130 |
265 |
103 |
121 |
202 |
220 |
58 |
22 |
184 |
40 |
283 |
301 |
139 |
274 |
193 |
238 |
76 |
13 |
175 |
31 |
112 |
319 |
157 |
94 |
256 |
|
234 |
315 |
9 |
171 |
54 |
216 |
153 |
72 |
252 |
90 |
297 |
135 |
270 |
108 |
126 |
207 |
225 |
63 |
27 |
189 |
45 |
288 |
306 |
144 |
279 |
198 |
243 |
81 |
18 |
180 |
36 |
117 |
324 |
162 |
99 |
261 |
|
227 |
308 |
2 |
164 |
47 |
209 |
146 |
65 |
245 |
83 |
290 |
128 |
263 |
101 |
119 |
200 |
218 |
56 |
20 |
182 |
38 |
281 |
299 |
137 |
272 |
191 |
236 |
74 |
11 |
173 |
29 |
110 |
317 |
155 |
92 |
254 |
|
228 |
309 |
3 |
165 |
48 |
210 |
147 |
66 |
246 |
84 |
291 |
129 |
264 |
102 |
120 |
201 |
219 |
57 |
21 |
183 |
39 |
282 |
300 |
138 |
273 |
192 |
237 |
75 |
12 |
174 |
30 |
111 |
318 |
156 |
93 |
255 |
|
230 |
311 |
5 |
167 |
50 |
212 |
149 |
68 |
248 |
86 |
293 |
131 |
266 |
104 |
122 |
203 |
221 |
59 |
23 |
185 |
41 |
284 |
302 |
140 |
275 |
194 |
239 |
77 |
14 |
176 |
32 |
113 |
320 |
158 |
95 |
257 |
|
232 |
313 |
7 |
169 |
52 |
214 |
151 |
70 |
250 |
88 |
295 |
133 |
268 |
106 |
124 |
205 |
223 |
61 |
25 |
187 |
43 |
286 |
304 |
142 |
277 |
196 |
241 |
79 |
16 |
178 |
34 |
115 |
322 |
160 |
97 |
259 |
|
233 |
314 |
8 |
170 |
53 |
215 |
152 |
71 |
251 |
89 |
296 |
134 |
269 |
107 |
125 |
206 |
224 |
62 |
26 |
188 |
44 |
287 |
305 |
143 |
278 |
197 |
242 |
80 |
17 |
179 |
35 |
116 |
323 |
161 |
98 |
260 |
|
226 |
307 |
1 |
163 |
46 |
208 |
145 |
64 |
244 |
82 |
289 |
127 |
262 |
100 |
118 |
199 |
217 |
55 |
19 |
181 |
37 |
280 |
298 |
136 |
271 |
190 |
235 |
73 |
10 |
172 |
28 |
109 |
316 |
154 |
91 |
253 |
|
231 |
312 |
6 |
168 |
51 |
213 |
150 |
69 |
249 |
87 |
294 |
132 |
267 |
105 |
123 |
204 |
222 |
60 |
24 |
186 |
42 |
285 |
303 |
141 |
276 |
195 |
240 |
78 |
15 |
177 |
33 |
114 |
321 |
159 |
96 |
258 |
|
With 8 possible squares for square B
and 1.740.800 possible squares (Medjig Solutions) for each Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
8 * 1.740.8009 = 1,17 1057.
24.6 Magic Squares, Misc. Orders
Magic Squares composed out of Sub Squares with different Magic Sums are also referred to as Inlaid Magic Squares.
A few more examples of miscellaneous types of Composed Magic Squares are summarized in following table:
|