The resulting square can be combined with a composed border as constructed in Section 27.4:
Inlaid 12
4 |
5 |
12 |
13 |
131 |
134 |
20 |
21 |
123 |
126 |
139 |
142 |
137 |
144 |
129 |
136 |
10 |
15 |
121 |
128 |
18 |
23 |
2 |
7 |
28 |
29 |
81 |
63 |
66 |
52 |
57 |
98 |
80 |
83 |
115 |
118 |
113 |
120 |
55 |
70 |
85 |
48 |
61 |
72 |
87 |
102 |
26 |
31 |
30 |
27 |
74 |
77 |
59 |
42 |
67 |
91 |
94 |
76 |
117 |
116 |
119 |
114 |
101 |
96 |
92 |
99 |
56 |
41 |
45 |
50 |
32 |
25 |
36 |
37 |
95 |
100 |
104 |
89 |
46 |
53 |
49 |
44 |
107 |
110 |
105 |
112 |
69 |
51 |
54 |
78 |
103 |
86 |
68 |
71 |
34 |
39 |
38 |
35 |
43 |
58 |
73 |
84 |
97 |
60 |
75 |
90 |
109 |
108 |
111 |
106 |
62 |
65 |
47 |
88 |
93 |
79 |
82 |
64 |
40 |
33 |
6 |
3 |
14 |
11 |
133 |
132 |
22 |
19 |
125 |
124 |
141 |
140 |
143 |
138 |
135 |
130 |
16 |
9 |
127 |
122 |
24 |
17 |
8 |
1 |
|
s3
|
Attachment 28.2 shows a few 12th order Inlaid Magic Squares for miscellaneous Inlays with different Magic Sums.
Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the composed border.
28.3 Magic Squares (16 x 16)
Inlaid Magic Squares of order 12, with four 5th order Embedded Magic Squares with different Magic Sums and an Associated Border, as described in Section 26.5, can be transformed into Inlaid Magic Squares with a Center Cross:
Inlaid 12
1 |
139 |
140 |
141 |
143 |
135 |
3 |
11 |
9 |
8 |
7 |
133 |
84 |
14 |
40 |
53 |
66 |
118 |
122 |
100 |
89 |
78 |
34 |
72 |
96 |
65 |
114 |
22 |
38 |
52 |
77 |
30 |
130 |
98 |
88 |
60 |
108 |
46 |
50 |
64 |
113 |
18 |
106 |
86 |
76 |
29 |
126 |
48 |
132 |
112 |
17 |
42 |
58 |
62 |
28 |
125 |
102 |
94 |
74 |
24 |
36 |
54 |
70 |
110 |
16 |
41 |
90 |
82 |
26 |
124 |
101 |
120 |
25 |
23 |
45 |
56 |
67 |
111 |
131 |
105 |
92 |
79 |
27 |
109 |
121 |
68 |
115 |
15 |
47 |
57 |
80 |
31 |
123 |
107 |
93 |
13 |
97 |
39 |
59 |
69 |
116 |
19 |
99 |
95 |
81 |
32 |
127 |
37 |
85 |
117 |
20 |
43 |
51 |
71 |
33 |
128 |
103 |
87 |
83 |
49 |
73 |
55 |
63 |
119 |
21 |
44 |
91 |
75 |
35 |
129 |
104 |
61 |
12 |
138 |
137 |
136 |
134 |
142 |
10 |
2 |
4 |
5 |
6 |
144 |
|
s5
|
Center Cross 12
14 |
40 |
53 |
66 |
118 |
84 |
72 |
122 |
100 |
89 |
78 |
34 |
65 |
114 |
22 |
38 |
52 |
96 |
60 |
77 |
30 |
130 |
98 |
88 |
46 |
50 |
64 |
113 |
18 |
108 |
48 |
106 |
86 |
76 |
29 |
126 |
112 |
17 |
42 |
58 |
62 |
132 |
24 |
28 |
125 |
102 |
94 |
74 |
54 |
70 |
110 |
16 |
41 |
36 |
120 |
90 |
82 |
26 |
124 |
101 |
139 |
140 |
141 |
143 |
135 |
1 |
133 |
3 |
11 |
9 |
8 |
7 |
138 |
137 |
136 |
134 |
142 |
12 |
144 |
10 |
2 |
4 |
5 |
6 |
23 |
45 |
56 |
67 |
111 |
25 |
109 |
131 |
105 |
92 |
79 |
27 |
68 |
115 |
15 |
47 |
57 |
121 |
13 |
80 |
31 |
123 |
107 |
93 |
39 |
59 |
69 |
116 |
19 |
97 |
37 |
99 |
95 |
81 |
32 |
127 |
117 |
20 |
43 |
51 |
71 |
85 |
49 |
33 |
128 |
103 |
87 |
83 |
55 |
63 |
119 |
21 |
44 |
73 |
61 |
91 |
75 |
35 |
129 |
104 |
|
|
The resulting square can be combined with a composed border as constructed in Section 27.5:
Inlaid 16
4 |
5 |
12 |
13 |
243 |
246 |
20 |
21 |
249 |
256 |
241 |
248 |
10 |
15 |
233 |
240 |
36 |
37 |
70 |
96 |
109 |
122 |
174 |
140 |
217 |
224 |
121 |
170 |
78 |
94 |
108 |
152 |
38 |
35 |
102 |
106 |
120 |
169 |
74 |
164 |
223 |
218 |
168 |
73 |
98 |
114 |
118 |
188 |
44 |
45 |
110 |
126 |
166 |
72 |
97 |
92 |
209 |
216 |
195 |
196 |
197 |
199 |
191 |
57 |
|
235 |
238 |
28 |
29 |
227 |
230 |
251 |
254 |
18 |
23 |
225 |
232 |
26 |
31 |
2 |
7 |
128 |
178 |
156 |
145 |
134 |
90 |
219 |
222 |
116 |
133 |
86 |
186 |
154 |
144 |
34 |
39 |
104 |
162 |
142 |
132 |
85 |
182 |
221 |
220 |
80 |
84 |
181 |
158 |
150 |
130 |
40 |
33 |
176 |
146 |
138 |
82 |
180 |
157 |
211 |
214 |
189 |
59 |
67 |
65 |
64 |
63 |
42 |
47 |
|
46 |
43 |
194 |
193 |
192 |
190 |
198 |
68 |
215 |
210 |
79 |
101 |
112 |
123 |
167 |
81 |
52 |
53 |
124 |
171 |
71 |
103 |
113 |
177 |
201 |
208 |
95 |
115 |
125 |
172 |
75 |
153 |
54 |
51 |
173 |
76 |
99 |
107 |
127 |
141 |
207 |
202 |
111 |
119 |
175 |
77 |
100 |
129 |
6 |
3 |
14 |
11 |
245 |
244 |
22 |
19 |
255 |
250 |
247 |
242 |
16 |
9 |
239 |
234 |
|
200 |
66 |
58 |
60 |
61 |
62 |
213 |
212 |
165 |
187 |
161 |
148 |
135 |
83 |
48 |
41 |
69 |
136 |
87 |
179 |
163 |
149 |
203 |
206 |
93 |
155 |
151 |
137 |
88 |
183 |
50 |
55 |
105 |
89 |
184 |
159 |
143 |
139 |
205 |
204 |
117 |
147 |
131 |
91 |
185 |
160 |
56 |
49 |
237 |
236 |
30 |
27 |
229 |
228 |
253 |
252 |
24 |
17 |
231 |
226 |
32 |
25 |
8 |
1 |
|
|
s5
|
Attachment 28.3
shows a few 16th order Inlaid Magic Squares for miscellaneous Inlays with different Magic Sums.
Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the composed border.
28.4 Magic Squares (20 x 20)
Inlaid Magic Squares of order 16, with four 7th order Embedded Magic Squares with different Magic Sums and an Associated Border, as described in
Section 26.6, can be transformed into Inlaid Magic Squares with a Center Cross:
Inlaid 16
69 |
80 |
68 |
71 |
73 |
75 |
78 |
66 |
252 |
17 |
175 |
99 |
246 |
216 |
138 |
61 |
60 |
250 |
221 |
129 |
63 |
19 |
166 |
104 |
108 |
54 |
24 |
170 |
109 |
241 |
223 |
131 |
140 |
111 |
243 |
214 |
136 |
58 |
29 |
161 |
172 |
141 |
49 |
31 |
163 |
102 |
248 |
218 |
220 |
168 |
106 |
253 |
209 |
143 |
51 |
22 |
28 |
211 |
134 |
56 |
26 |
173 |
97 |
255 |
|
178 |
190 |
187 |
185 |
183 |
180 |
192 |
181 |
225 |
95 |
147 |
6 |
40 |
122 |
205 |
12 |
10 |
45 |
113 |
207 |
227 |
86 |
152 |
204 |
198 |
232 |
90 |
157 |
1 |
47 |
115 |
156 |
159 |
3 |
38 |
120 |
202 |
237 |
81 |
124 |
125 |
193 |
239 |
83 |
150 |
8 |
42 |
92 |
88 |
154 |
13 |
33 |
127 |
195 |
230 |
44 |
35 |
118 |
200 |
234 |
93 |
145 |
15 |
236 |
|
21 |
32 |
162 |
110 |
251 |
217 |
135 |
52 |
213 |
247 |
212 |
144 |
50 |
30 |
171 |
105 |
165 |
59 |
25 |
167 |
100 |
256 |
210 |
142 |
133 |
98 |
254 |
219 |
137 |
55 |
20 |
176 |
101 |
132 |
64 |
18 |
174 |
107 |
249 |
215 |
53 |
169 |
103 |
244 |
224 |
130 |
62 |
27 |
245 |
222 |
139 |
57 |
23 |
164 |
112 |
242 |
76 |
65 |
77 |
74 |
72 |
70 |
67 |
79 |
|
240 |
82 |
158 |
11 |
41 |
119 |
196 |
229 |
7 |
36 |
128 |
194 |
238 |
91 |
153 |
37 |
203 |
233 |
87 |
148 |
16 |
34 |
126 |
85 |
146 |
14 |
43 |
121 |
199 |
228 |
96 |
117 |
116 |
208 |
226 |
94 |
155 |
9 |
39 |
149 |
89 |
151 |
4 |
48 |
114 |
206 |
235 |
197 |
46 |
123 |
201 |
231 |
84 |
160 |
2 |
5 |
191 |
179 |
182 |
184 |
186 |
189 |
177 |
188 |
|
|
s7
|
Center Cross 16
17 |
175 |
99 |
246 |
216 |
138 |
61 |
252 |
250 |
221 |
129 |
63 |
19 |
166 |
104 |
60 |
54 |
24 |
170 |
109 |
241 |
223 |
131 |
108 |
111 |
243 |
214 |
136 |
58 |
29 |
161 |
140 |
141 |
49 |
31 |
163 |
102 |
248 |
218 |
172 |
168 |
106 |
253 |
209 |
143 |
51 |
22 |
220 |
211 |
134 |
56 |
26 |
173 |
97 |
255 |
28 |
80 |
68 |
71 |
73 |
75 |
78 |
66 |
69 |
|
12 |
225 |
95 |
147 |
6 |
40 |
122 |
205 |
204 |
10 |
45 |
113 |
207 |
227 |
86 |
152 |
156 |
198 |
232 |
90 |
157 |
1 |
47 |
115 |
124 |
159 |
3 |
38 |
120 |
202 |
237 |
81 |
92 |
125 |
193 |
239 |
83 |
150 |
8 |
42 |
44 |
88 |
154 |
13 |
33 |
127 |
195 |
230 |
236 |
35 |
118 |
200 |
234 |
93 |
145 |
15 |
181 |
178 |
190 |
187 |
185 |
183 |
180 |
192 |
|
65 |
77 |
74 |
72 |
70 |
67 |
79 |
76 |
32 |
162 |
110 |
251 |
217 |
135 |
52 |
21 |
247 |
212 |
144 |
50 |
30 |
171 |
105 |
213 |
59 |
25 |
167 |
100 |
256 |
210 |
142 |
165 |
98 |
254 |
219 |
137 |
55 |
20 |
176 |
133 |
132 |
64 |
18 |
174 |
107 |
249 |
215 |
101 |
169 |
103 |
244 |
224 |
130 |
62 |
27 |
53 |
222 |
139 |
57 |
23 |
164 |
112 |
242 |
245 |
|
188 |
191 |
179 |
182 |
184 |
186 |
189 |
177 |
229 |
240 |
82 |
158 |
11 |
41 |
119 |
196 |
37 |
7 |
36 |
128 |
194 |
238 |
91 |
153 |
85 |
203 |
233 |
87 |
148 |
16 |
34 |
126 |
117 |
146 |
14 |
43 |
121 |
199 |
228 |
96 |
149 |
116 |
208 |
226 |
94 |
155 |
9 |
39 |
197 |
89 |
151 |
4 |
48 |
114 |
206 |
235 |
5 |
46 |
123 |
201 |
231 |
84 |
160 |
2 |
|
|
|
The resulting square can be combined with a composed border as constructed in Section Section 27.6:
Inlaid 20
4 |
5 |
12 |
13 |
387 |
390 |
20 |
21 |
379 |
382 |
393 |
400 |
385 |
392 |
10 |
15 |
377 |
384 |
18 |
23 |
44 |
45 |
89 |
247 |
171 |
318 |
288 |
210 |
133 |
324 |
353 |
360 |
322 |
293 |
201 |
135 |
91 |
238 |
176 |
132 |
46 |
43 |
126 |
96 |
242 |
181 |
313 |
295 |
203 |
180 |
359 |
354 |
183 |
315 |
286 |
208 |
130 |
101 |
233 |
212 |
52 |
53 |
213 |
121 |
103 |
235 |
174 |
320 |
290 |
244 |
345 |
352 |
240 |
178 |
325 |
281 |
215 |
123 |
94 |
292 |
54 |
51 |
283 |
206 |
128 |
98 |
245 |
169 |
327 |
100 |
351 |
346 |
152 |
140 |
143 |
145 |
147 |
150 |
138 |
141 |
|
28 |
29 |
371 |
374 |
36 |
37 |
363 |
366 |
395 |
398 |
369 |
376 |
26 |
31 |
361 |
368 |
34 |
39 |
2 |
7 |
84 |
297 |
167 |
219 |
78 |
112 |
194 |
277 |
355 |
358 |
276 |
82 |
117 |
185 |
279 |
299 |
158 |
224 |
42 |
47 |
228 |
270 |
304 |
162 |
229 |
73 |
119 |
187 |
357 |
356 |
196 |
231 |
75 |
110 |
192 |
274 |
309 |
153 |
48 |
41 |
164 |
197 |
265 |
311 |
155 |
222 |
80 |
114 |
347 |
350 |
116 |
160 |
226 |
85 |
105 |
199 |
267 |
302 |
50 |
55 |
308 |
107 |
190 |
272 |
306 |
165 |
217 |
87 |
349 |
348 |
253 |
250 |
262 |
259 |
257 |
255 |
252 |
264 |
56 |
49 |
|
60 |
61 |
137 |
149 |
146 |
144 |
142 |
139 |
151 |
148 |
337 |
344 |
104 |
234 |
182 |
323 |
289 |
207 |
124 |
93 |
62 |
59 |
319 |
284 |
216 |
122 |
102 |
243 |
177 |
285 |
343 |
338 |
131 |
97 |
239 |
172 |
328 |
282 |
214 |
237 |
68 |
69 |
170 |
326 |
291 |
209 |
127 |
92 |
248 |
205 |
329 |
336 |
204 |
136 |
90 |
246 |
179 |
321 |
287 |
173 |
70 |
67 |
241 |
175 |
316 |
296 |
202 |
134 |
99 |
125 |
335 |
330 |
294 |
211 |
129 |
95 |
236 |
184 |
314 |
317 |
6 |
3 |
14 |
11 |
389 |
388 |
22 |
19 |
381 |
380 |
399 |
394 |
391 |
386 |
16 |
9 |
383 |
378 |
24 |
17 |
|
260 |
263 |
251 |
254 |
256 |
258 |
261 |
249 |
339 |
342 |
301 |
312 |
154 |
230 |
83 |
113 |
191 |
268 |
58 |
63 |
109 |
79 |
108 |
200 |
266 |
310 |
163 |
225 |
341 |
340 |
157 |
275 |
305 |
159 |
220 |
88 |
106 |
198 |
64 |
57 |
189 |
218 |
86 |
115 |
193 |
271 |
300 |
168 |
331 |
334 |
221 |
188 |
280 |
298 |
166 |
227 |
81 |
111 |
66 |
71 |
269 |
161 |
223 |
76 |
120 |
186 |
278 |
307 |
333 |
332 |
77 |
118 |
195 |
273 |
303 |
156 |
232 |
74 |
72 |
65 |
30 |
27 |
373 |
372 |
38 |
35 |
365 |
364 |
397 |
396 |
375 |
370 |
32 |
25 |
367 |
362 |
40 |
33 |
8 |
1 |
|
|
s7
|
Attachment 28.4
shows a few 20th order Inlaid Magic Squares for miscellaneous Inlays with different Magic Sums.
Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the composed border.
|