Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
27.0 Magic Squares, Higher Order, Composed Border (1)
In previous sections Inlaid Magic Squares with Associated Borders have been discussed for miscellaneous orders.
Composed Magic Squares of order 8, as constructed in Section 22.1, can be transformed into Inlaid Magic Squares with a Composed Border as illustrated below:
As discussed in Section Section 22.1, both Magic Squares shown above
correspond with 0,5 1012 Magic Squares.
Inlaid Magic Squares of order 9, with a Composed Border, have been described in Section 9.6.4.
Inlaid Magic Squares of order 10, with a Composed Border, based on the Medjig method of construction, have been described in
Section 10.1.3.
|
Composed
71 47 40 44 83 82 63 23 28 24 39 45 52 66 22 26 27 67 80 81 35 49 56 62 20 21 34 74 75 79 57 61 54 30 77 73 78 38 19 18 53 41 36 72 92 12 13 84 91 11 68 51 46 37 14 4 5 95 98 87 58 32 42 70 15 93 100 2 7 86 31 59 69 43 16 6 3 97 96 85 64 55 50 33 76 99 94 8 1 25 29 65 60 48 90 89 88 17 10 9 Inlaid
71 47 83 82 63 23 28 24 40 44 39 45 22 26 27 67 80 81 52 66 53 41 92 12 13 84 91 11 36 72 68 51 14 4 5 95 98 87 46 37 58 32 15 93 100 2 7 86 42 70 31 59 16 6 3 97 96 85 69 43 64 55 76 99 94 8 1 25 50 33 29 65 90 89 88 17 10 9 60 48 35 49 20 21 34 74 75 79 56 62 57 61 77 73 78 38 19 18 54 30
As the 10th order Composed Magic Square shown above (left), with Magic Sum s10 = 505, is composed out of:
the Composed Border of the resulting Inlaid Magic Square (right) is Associated.
Inlaid Magic Squares of order 11, with a Composed Border, have been described in Section 11.1.3.
Composed Magic Squares of order 12, as constructed in Section 22.2, can be transformed into Inlaid Magic Squares with a Composed Border as illustrated below: |
Composed
4 5 139 142 12 13 131 134 20 21 123 126 137 144 2 7 129 136 10 15 121 128 18 23 6 3 141 140 14 11 133 132 22 19 125 124 143 138 8 1 135 130 16 9 127 122 24 17 28 29 115 118 36 37 107 110 44 45 99 102 113 120 26 31 105 112 34 39 97 104 42 47 30 27 117 116 38 35 109 108 46 43 101 100 119 114 32 25 111 106 40 33 103 98 48 41 52 53 91 94 60 61 83 86 68 69 75 78 89 96 50 55 81 88 58 63 73 80 66 71 54 51 93 92 62 59 85 84 70 67 77 76 95 90 56 49 87 82 64 57 79 74 72 65 Inlaid
4 12 13 131 134 5 139 20 21 123 126 142 28 36 37 107 110 29 115 44 45 99 102 118 113 105 112 34 39 120 26 97 104 42 47 31 30 38 35 109 108 27 117 46 43 101 100 116 119 111 106 40 33 114 32 103 98 48 41 25 137 129 136 10 15 144 2 121 128 18 23 7 6 14 11 133 132 3 141 22 19 125 124 140 52 60 61 83 86 53 91 68 69 75 78 94 89 81 88 58 63 96 50 73 80 66 71 55 54 62 59 85 84 51 93 70 67 77 76 92 95 87 82 64 57 90 56 79 74 72 65 49 143 135 130 16 9 138 8 127 122 24 17 1
As discussed in Section Section 22.2, both Magic Squares shown above
correspond with 6,6 1028 Magic Squares.
Alternatively Composed Magic Squares of order 12 can be transformed into Inlaid Magic Squares with a Composed Border as illustrated below: |
Composed
4 5 139 142 12 13 131 134 20 21 123 126 137 144 2 7 129 136 10 15 121 128 18 23 6 3 141 140 14 11 133 132 22 19 125 124 143 138 8 1 135 130 16 9 127 122 24 17 28 29 115 118 36 37 107 110 44 45 99 102 113 120 26 31 105 112 34 39 97 104 42 47 30 27 117 116 38 35 109 108 46 43 101 100 119 114 32 25 111 106 40 33 103 98 48 41 52 53 91 94 60 61 83 86 68 69 75 78 89 96 50 55 81 88 58 63 73 80 66 71 54 51 93 92 62 59 85 84 70 67 77 76 95 90 56 49 87 82 64 57 79 74 72 65 Inlaid
4 5 12 13 131 134 20 21 123 126 139 142 137 144 129 136 10 15 121 128 18 23 2 7 28 29 44 45 99 102 52 53 91 94 115 118 113 120 97 104 42 47 89 96 50 55 26 31 30 27 46 43 101 100 54 51 93 92 117 116 119 114 103 98 48 41 95 90 56 49 32 25 36 37 60 61 83 86 68 69 75 78 107 110 105 112 81 88 58 63 73 80 66 71 34 39 38 35 62 59 85 84 70 67 77 76 109 108 111 106 87 82 64 57 79 74 72 65 40 33 6 3 14 11 133 132 22 19 125 124 141 140 143 138 135 130 16 9 127 122 24 17 8 1
The Composed Center Square C of the (right) Inlaid Magic Square with Composed Border contains the consecutive integers ci = {41 ... 104} = 40 + {1 ... 64}.
|
Bimagic (Trump)
60 9 38 23 49 4 30 47 33 20 15 62 40 21 59 10 29 48 51 2 28 41 7 54 8 53 26 43 13 64 34 19 46 31 1 52 22 39 12 57 11 58 24 37 63 14 17 36 55 6 44 25 3 50 45 32 18 35 61 16 42 27 56 5 Inlaid (1 Order 8 Bimagic Inlay)
4 5 12 13 131 134 20 21 123 126 139 142 137 144 129 136 10 15 121 128 18 23 2 7 28 29 100 49 78 63 89 44 70 87 115 118 113 120 73 60 55 102 80 61 99 50 26 31 30 27 69 88 91 42 68 81 47 94 117 116 119 114 48 93 66 83 53 104 74 59 32 25 36 37 86 71 41 92 62 79 52 97 107 110 105 112 51 98 64 77 103 54 57 76 34 39 38 35 95 46 84 65 43 90 85 72 109 108 111 106 58 75 101 56 82 67 96 45 40 33 6 3 14 11 133 132 22 19 125 124 141 140 143 138 135 130 16 9 127 122 24 17 8 1
The Magic / Bimagic Sums of the order 8 Bimagic Center Square are 580 / 44780.
The resulting number of order 12 Inlaid Magic Squares with order 8 Bimagic Center Square is consequently 2,62 1022.
Comparable transformations can be applied on Composed Magic Squares of order 16 (ref. Section 22.3), as illustrated below: Inlaid (9 Order 4 Inlays) As discussed in Section Section 22.3, the Magic Square shown above correspond with 4,7 1054 Magic Squares. Inlaid (1 Order 12 Composed Inlay)
The Composed Center Square C of the Inlaid Magic Square shown above contains the consecutive
integers ci = {57 ... 200} = 56 + {1 ... 144}.
Inlaid (1 Order 12 Bimagic Inlay)
The Magic / Bimagic Sums of the order 12 Bimagic Center Square are 1542 / 218882.
The number of possible borders for the Inlaid Magic Squares shown above is
7! * 3847 = 6,2 1021.
Comparable 16 x 16 Inlaid Magic Squares can be constructed based on:
of which a few examples are shown in Attachment 26.5.
Comparable transformations can be applied on Composed Magic Squares of order 20 (ref. Section 22.4), as illustrated below: Inlaid (9 Order 4 Inlays) Inlaid (1 Order 16 Composed Inlay)
As discussed in Section Section 22.4, the Magic Square shown above
correspond with 6,3 1089 Magic Squares.
|
Index | About the Author |