The right square can be completed with a 14 x 14 center cross based on the consecutive integers 73 ... 124:
MC = 1379
4 |
5 |
191 |
194 |
189 |
196 |
2 |
7 |
6 |
3 |
193 |
192 |
195 |
190 |
8 |
1 |
|
12 |
13 |
81 |
116 |
183 |
186 |
181 |
188 |
82 |
115 |
10 |
15 |
14 |
11 |
114 |
83 |
185 |
184 |
187 |
182 |
113 |
84 |
16 |
9 |
|
20 |
21 |
175 |
178 |
173 |
180 |
18 |
23 |
22 |
19 |
177 |
176 |
179 |
174 |
24 |
17 |
|
28 |
29 |
167 |
170 |
165 |
172 |
26 |
31 |
73 |
74 |
122 |
121 |
124 |
123 |
75 |
76 |
30 |
27 |
169 |
168 |
171 |
166 |
32 |
25 |
|
36 |
37 |
102 |
95 |
159 |
162 |
157 |
164 |
97 |
100 |
34 |
39 |
91 |
105 |
98 |
101 |
107 |
89 |
106 |
92 |
96 |
99 |
90 |
108 |
38 |
35 |
94 |
103 |
161 |
160 |
163 |
158 |
104 |
93 |
40 |
33 |
|
44 |
45 |
151 |
154 |
149 |
156 |
42 |
47 |
120 |
119 |
79 |
80 |
77 |
78 |
118 |
117 |
46 |
43 |
153 |
152 |
155 |
150 |
48 |
41 |
|
52 |
53 |
143 |
146 |
141 |
148 |
50 |
55 |
54 |
51 |
145 |
144 |
147 |
142 |
56 |
49 |
|
60 |
61 |
112 |
85 |
135 |
138 |
133 |
140 |
111 |
86 |
58 |
63 |
62 |
59 |
87 |
110 |
137 |
136 |
139 |
134 |
88 |
109 |
64 |
57 |
|
68 |
69 |
127 |
130 |
125 |
132 |
66 |
71 |
70 |
67 |
129 |
128 |
131 |
126 |
72 |
65 |
|
After adding 26 to all elements of the left square, it can be completed with a 14 x 14 center cross based on the integers 1 ... 26 and 171 to 196:
MC = 1379
30 |
31 |
165 |
168 |
163 |
170 |
28 |
33 |
32 |
29 |
167 |
166 |
169 |
164 |
34 |
27 |
|
38 |
39 |
195 |
2 |
157 |
160 |
155 |
162 |
6 |
191 |
36 |
41 |
40 |
37 |
8 |
189 |
159 |
158 |
161 |
156 |
188 |
9 |
42 |
35 |
|
46 |
47 |
149 |
152 |
147 |
154 |
44 |
49 |
48 |
45 |
151 |
150 |
153 |
148 |
50 |
43 |
|
54 |
55 |
141 |
144 |
139 |
146 |
52 |
57 |
194 |
192 |
190 |
19 |
3 |
5 |
7 |
178 |
56 |
53 |
143 |
142 |
145 |
140 |
58 |
51 |
|
62 |
63 |
11 |
186 |
133 |
136 |
131 |
138 |
12 |
185 |
60 |
65 |
20 |
176 |
1 |
4 |
175 |
174 |
177 |
21 |
193 |
196 |
22 |
23 |
64 |
61 |
184 |
13 |
135 |
134 |
137 |
132 |
183 |
14 |
66 |
59 |
|
70 |
71 |
125 |
128 |
123 |
130 |
68 |
73 |
173 |
25 |
26 |
10 |
24 |
172 |
171 |
187 |
72 |
69 |
127 |
126 |
129 |
124 |
74 |
67 |
|
78 |
79 |
117 |
120 |
115 |
122 |
76 |
81 |
80 |
77 |
119 |
118 |
121 |
116 |
82 |
75 |
|
86 |
87 |
182 |
15 |
109 |
112 |
107 |
114 |
181 |
16 |
84 |
89 |
88 |
85 |
17 |
180 |
111 |
110 |
113 |
108 |
18 |
179 |
90 |
83 |
|
94 |
95 |
101 |
104 |
99 |
106 |
92 |
97 |
96 |
93 |
103 |
102 |
105 |
100 |
98 |
91 |
|
Each center cross corresponds with (12!) * (12!) = 2,3 1017 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 1379
98 |
73 |
74 |
122 |
121 |
91 |
105 |
81 |
4 |
5 |
191 |
194 |
12 |
13 |
82 |
189 |
196 |
2 |
7 |
181 |
188 |
114 |
6 |
3 |
193 |
192 |
14 |
11 |
113 |
195 |
190 |
8 |
1 |
187 |
182 |
102 |
28 |
29 |
167 |
170 |
36 |
37 |
97 |
165 |
172 |
26 |
31 |
157 |
164 |
|
107 |
89 |
120 |
119 |
79 |
80 |
101 |
183 |
186 |
20 |
21 |
175 |
178 |
116 |
10 |
15 |
173 |
180 |
18 |
23 |
115 |
185 |
184 |
22 |
19 |
177 |
176 |
83 |
16 |
9 |
179 |
174 |
24 |
17 |
84 |
159 |
162 |
44 |
45 |
151 |
154 |
95 |
34 |
39 |
149 |
156 |
42 |
47 |
100 |
|
94 |
30 |
27 |
169 |
168 |
38 |
35 |
104 |
171 |
166 |
32 |
25 |
163 |
158 |
112 |
52 |
53 |
143 |
146 |
60 |
61 |
111 |
141 |
148 |
50 |
55 |
133 |
140 |
87 |
54 |
51 |
145 |
144 |
62 |
59 |
88 |
147 |
142 |
56 |
49 |
139 |
134 |
96 |
124 |
123 |
75 |
76 |
106 |
92 |
|
161 |
160 |
46 |
43 |
153 |
152 |
103 |
40 |
33 |
155 |
150 |
48 |
41 |
93 |
135 |
138 |
68 |
69 |
127 |
130 |
85 |
58 |
63 |
125 |
132 |
66 |
71 |
86 |
137 |
136 |
70 |
67 |
129 |
128 |
110 |
64 |
57 |
131 |
126 |
72 |
65 |
109 |
90 |
108 |
77 |
78 |
118 |
117 |
99 |
|
MC = 1379
1 |
194 |
192 |
190 |
19 |
20 |
176 |
195 |
30 |
31 |
165 |
168 |
38 |
39 |
6 |
163 |
170 |
28 |
33 |
155 |
162 |
8 |
32 |
29 |
167 |
166 |
40 |
37 |
188 |
169 |
164 |
34 |
27 |
161 |
156 |
11 |
54 |
55 |
141 |
144 |
62 |
63 |
12 |
139 |
146 |
52 |
57 |
131 |
138 |
|
175 |
174 |
173 |
25 |
26 |
10 |
4 |
157 |
160 |
46 |
47 |
149 |
152 |
2 |
36 |
41 |
147 |
154 |
44 |
49 |
191 |
159 |
158 |
48 |
45 |
151 |
150 |
189 |
42 |
35 |
153 |
148 |
50 |
43 |
9 |
133 |
136 |
70 |
71 |
125 |
128 |
186 |
60 |
65 |
123 |
130 |
68 |
73 |
185 |
|
184 |
56 |
53 |
143 |
142 |
64 |
61 |
183 |
145 |
140 |
58 |
51 |
137 |
132 |
182 |
78 |
79 |
117 |
120 |
86 |
87 |
181 |
115 |
122 |
76 |
81 |
107 |
114 |
17 |
80 |
77 |
119 |
118 |
88 |
85 |
18 |
121 |
116 |
82 |
75 |
113 |
108 |
193 |
3 |
5 |
7 |
178 |
177 |
21 |
|
135 |
134 |
72 |
69 |
127 |
126 |
13 |
66 |
59 |
129 |
124 |
74 |
67 |
14 |
109 |
112 |
94 |
95 |
101 |
104 |
15 |
84 |
89 |
99 |
106 |
92 |
97 |
16 |
111 |
110 |
96 |
93 |
103 |
102 |
180 |
90 |
83 |
105 |
100 |
98 |
91 |
179 |
22 |
23 |
24 |
172 |
171 |
187 |
196 |
|
Each border corresponds with (12!) * (12!) = 2,3 1017 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 14 x 14 Magic Square shown above corresponds with 9! * 3849 = 6,6 1028, for each border or center cross.
Comparable 14 x 14 Composed Magic Squares can be constructed based on:
-
the center cross based on the integers 1 ... 26 and 171 to 196 and
-
the order 6 Sub Squares of the Composed Magic Squares as discussed in Section 22.5
of which a few examples are shown in Attachment 27.2.
29.3 Magic Squares (18 x 18)
After adding 34 to all elements of the normal Composed Magic Square (16 x 16, MC = 2056) shown in Section 22.3,
it can be completed with an 18 x 18 center cross based on the integers 1 ... 34 and 291 to 324:
MC = 2925
38 |
39 |
285 |
288 |
283 |
290 |
36 |
41 |
40 |
37 |
287 |
286 |
289 |
284 |
42 |
35 |
|
46 |
47 |
277 |
280 |
275 |
282 |
44 |
49 |
48 |
45 |
279 |
278 |
281 |
276 |
50 |
43 |
|
300 |
25 |
24 |
301 |
302 |
23 |
22 |
303 |
|
54 |
55 |
269 |
272 |
267 |
274 |
52 |
57 |
56 |
53 |
271 |
270 |
273 |
268 |
58 |
51 |
|
62 |
63 |
261 |
264 |
259 |
266 |
60 |
65 |
64 |
61 |
263 |
262 |
265 |
260 |
66 |
59 |
|
70 |
71 |
253 |
256 |
251 |
258 |
68 |
73 |
72 |
69 |
255 |
254 |
257 |
252 |
74 |
67 |
|
78 |
79 |
245 |
248 |
243 |
250 |
76 |
81 |
80 |
77 |
247 |
246 |
249 |
244 |
82 |
75 |
|
304 |
21 |
20 |
305 |
306 |
19 |
9 |
316 |
|
86 |
87 |
237 |
240 |
235 |
242 |
84 |
89 |
88 |
85 |
239 |
238 |
241 |
236 |
90 |
83 |
|
94 |
95 |
229 |
232 |
227 |
234 |
92 |
97 |
96 |
93 |
231 |
230 |
233 |
228 |
98 |
91 |
|
|
|
|
34 |
292 |
32 |
294 |
291 |
33 |
293 |
31 |
|
30 |
296 |
28 |
298 |
295 |
29 |
297 |
27 |
|
102 |
103 |
221 |
224 |
219 |
226 |
100 |
105 |
104 |
101 |
223 |
222 |
225 |
220 |
106 |
99 |
|
110 |
111 |
213 |
216 |
211 |
218 |
108 |
113 |
112 |
109 |
215 |
214 |
217 |
212 |
114 |
107 |
|
324 |
1 |
16 |
309 |
310 |
15 |
14 |
311 |
|
118 |
119 |
205 |
208 |
203 |
210 |
116 |
121 |
120 |
117 |
207 |
206 |
209 |
204 |
122 |
115 |
|
126 |
127 |
197 |
200 |
195 |
202 |
124 |
129 |
128 |
125 |
199 |
198 |
201 |
196 |
130 |
123 |
|
134 |
135 |
189 |
192 |
187 |
194 |
132 |
137 |
136 |
133 |
191 |
190 |
193 |
188 |
138 |
131 |
|
142 |
143 |
181 |
184 |
179 |
186 |
140 |
145 |
144 |
141 |
183 |
182 |
185 |
180 |
146 |
139 |
|
312 |
13 |
12 |
313 |
314 |
11 |
10 |
315 |
|
150 |
151 |
173 |
176 |
171 |
178 |
148 |
153 |
152 |
149 |
175 |
174 |
177 |
172 |
154 |
147 |
|
158 |
159 |
165 |
168 |
163 |
170 |
156 |
161 |
160 |
157 |
167 |
166 |
169 |
164 |
162 |
155 |
|
For n = 18 a non normal Magic Square (16 x 16, MC = 2600) can be constructed, which can be completed with an 18 x 18 center cross based on the consecutive integers 129 ... 196:
MC = 2925
4 |
5 |
319 |
322 |
317 |
324 |
2 |
7 |
6 |
3 |
321 |
320 |
323 |
318 |
8 |
1 |
|
12 |
13 |
311 |
314 |
309 |
316 |
10 |
15 |
14 |
11 |
313 |
312 |
315 |
310 |
16 |
9 |
|
172 |
153 |
152 |
173 |
174 |
151 |
150 |
175 |
|
20 |
21 |
303 |
306 |
301 |
308 |
18 |
23 |
22 |
19 |
305 |
304 |
307 |
302 |
24 |
17 |
|
28 |
29 |
295 |
298 |
293 |
300 |
26 |
31 |
30 |
27 |
297 |
296 |
299 |
294 |
32 |
25 |
|
36 |
37 |
287 |
290 |
285 |
292 |
34 |
39 |
38 |
35 |
289 |
288 |
291 |
286 |
40 |
33 |
|
44 |
45 |
279 |
282 |
277 |
284 |
42 |
47 |
46 |
43 |
281 |
280 |
283 |
278 |
48 |
41 |
|
176 |
149 |
148 |
177 |
178 |
147 |
137 |
188 |
|
52 |
53 |
271 |
274 |
269 |
276 |
50 |
55 |
54 |
51 |
273 |
272 |
275 |
270 |
56 |
49 |
|
60 |
61 |
263 |
266 |
261 |
268 |
58 |
63 |
62 |
59 |
265 |
264 |
267 |
262 |
64 |
57 |
|
130 |
194 |
132 |
192 |
195 |
131 |
193 |
133 |
|
134 |
190 |
136 |
154 |
191 |
135 |
189 |
171 |
|
|
162 |
164 |
160 |
166 |
163 |
161 |
165 |
159 |
|
158 |
168 |
156 |
170 |
167 |
157 |
169 |
155 |
|
68 |
69 |
255 |
258 |
253 |
260 |
66 |
71 |
70 |
67 |
257 |
256 |
259 |
254 |
72 |
65 |
|
76 |
77 |
247 |
250 |
245 |
252 |
74 |
79 |
78 |
75 |
249 |
248 |
251 |
246 |
80 |
73 |
|
196 |
129 |
144 |
181 |
182 |
143 |
142 |
183 |
|
84 |
85 |
239 |
242 |
237 |
244 |
82 |
87 |
86 |
83 |
241 |
240 |
243 |
238 |
88 |
81 |
|
92 |
93 |
231 |
234 |
229 |
236 |
90 |
95 |
94 |
91 |
233 |
232 |
235 |
230 |
96 |
89 |
|
100 |
101 |
223 |
226 |
221 |
228 |
98 |
103 |
102 |
99 |
225 |
224 |
227 |
222 |
104 |
97 |
|
108 |
109 |
215 |
218 |
213 |
220 |
106 |
111 |
110 |
107 |
217 |
216 |
219 |
214 |
112 |
105 |
|
184 |
141 |
140 |
185 |
186 |
139 |
138 |
187 |
|
116 |
117 |
207 |
210 |
205 |
212 |
114 |
119 |
118 |
115 |
209 |
208 |
211 |
206 |
120 |
113 |
|
124 |
125 |
199 |
202 |
197 |
204 |
122 |
127 |
126 |
123 |
201 |
200 |
203 |
198 |
128 |
121 |
|
Each center cross corresponds with (16!) * (16!) = 4,4 1026 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 2925
308 |
2 |
322 |
4 |
320 |
6 |
318 |
8 |
26 |
300 |
38 |
39 |
285 |
288 |
46 |
47 |
277 |
280 |
24 |
283 |
290 |
36 |
41 |
275 |
282 |
44 |
49 |
302 |
40 |
37 |
287 |
286 |
48 |
45 |
279 |
278 |
22 |
289 |
284 |
42 |
35 |
281 |
276 |
50 |
43 |
304 |
70 |
71 |
253 |
256 |
78 |
79 |
245 |
248 |
20 |
251 |
258 |
68 |
73 |
243 |
250 |
76 |
81 |
306 |
72 |
69 |
255 |
254 |
80 |
77 |
247 |
246 |
9 |
257 |
252 |
74 |
67 |
249 |
244 |
82 |
75 |
|
34 |
292 |
32 |
294 |
30 |
296 |
28 |
298 |
307 |
54 |
55 |
269 |
272 |
62 |
63 |
261 |
264 |
25 |
267 |
274 |
52 |
57 |
259 |
266 |
60 |
65 |
301 |
56 |
53 |
271 |
270 |
64 |
61 |
263 |
262 |
23 |
273 |
268 |
58 |
51 |
265 |
260 |
66 |
59 |
303 |
86 |
87 |
237 |
240 |
94 |
95 |
229 |
232 |
21 |
235 |
242 |
84 |
89 |
227 |
234 |
92 |
97 |
305 |
88 |
85 |
239 |
238 |
96 |
93 |
231 |
230 |
19 |
241 |
236 |
90 |
83 |
233 |
228 |
98 |
91 |
316 |
|
324 |
102 |
103 |
221 |
224 |
110 |
111 |
213 |
216 |
16 |
219 |
226 |
100 |
105 |
211 |
218 |
108 |
113 |
310 |
104 |
101 |
223 |
222 |
112 |
109 |
215 |
214 |
14 |
225 |
220 |
106 |
99 |
217 |
212 |
114 |
107 |
312 |
134 |
135 |
189 |
192 |
142 |
143 |
181 |
184 |
12 |
187 |
194 |
132 |
137 |
179 |
186 |
140 |
145 |
314 |
136 |
133 |
191 |
190 |
144 |
141 |
183 |
182 |
10 |
193 |
188 |
138 |
131 |
185 |
180 |
146 |
139 |
18 |
323 |
3 |
321 |
5 |
319 |
7 |
317 |
299 |
|
118 |
119 |
205 |
208 |
126 |
127 |
197 |
200 |
1 |
203 |
210 |
116 |
121 |
195 |
202 |
124 |
129 |
309 |
120 |
117 |
207 |
206 |
128 |
125 |
199 |
198 |
15 |
209 |
204 |
122 |
115 |
201 |
196 |
130 |
123 |
311 |
150 |
151 |
173 |
176 |
158 |
159 |
165 |
168 |
13 |
171 |
178 |
148 |
153 |
163 |
170 |
156 |
161 |
313 |
152 |
149 |
175 |
174 |
160 |
157 |
167 |
166 |
11 |
177 |
172 |
154 |
147 |
169 |
164 |
162 |
155 |
315 |
291 |
33 |
293 |
31 |
295 |
29 |
297 |
27 |
17 |
|
MC = 2925
180 |
130 |
194 |
132 |
192 |
134 |
190 |
136 |
154 |
172 |
4 |
5 |
319 |
322 |
12 |
13 |
311 |
314 |
152 |
317 |
324 |
2 |
7 |
309 |
316 |
10 |
15 |
174 |
6 |
3 |
321 |
320 |
14 |
11 |
313 |
312 |
150 |
323 |
318 |
8 |
1 |
315 |
310 |
16 |
9 |
176 |
36 |
37 |
287 |
290 |
44 |
45 |
279 |
282 |
148 |
285 |
292 |
34 |
39 |
277 |
284 |
42 |
47 |
178 |
38 |
35 |
289 |
288 |
46 |
43 |
281 |
280 |
137 |
291 |
286 |
40 |
33 |
283 |
278 |
48 |
41 |
|
162 |
164 |
160 |
166 |
158 |
168 |
156 |
170 |
179 |
20 |
21 |
303 |
306 |
28 |
29 |
295 |
298 |
153 |
301 |
308 |
18 |
23 |
293 |
300 |
26 |
31 |
173 |
22 |
19 |
305 |
304 |
30 |
27 |
297 |
296 |
151 |
307 |
302 |
24 |
17 |
299 |
294 |
32 |
25 |
175 |
52 |
53 |
271 |
274 |
60 |
61 |
263 |
266 |
149 |
269 |
276 |
50 |
55 |
261 |
268 |
58 |
63 |
177 |
54 |
51 |
273 |
272 |
62 |
59 |
265 |
264 |
147 |
275 |
270 |
56 |
49 |
267 |
262 |
64 |
57 |
188 |
|
196 |
68 |
69 |
255 |
258 |
76 |
77 |
247 |
250 |
144 |
253 |
260 |
66 |
71 |
245 |
252 |
74 |
79 |
182 |
70 |
67 |
257 |
256 |
78 |
75 |
249 |
248 |
142 |
259 |
254 |
72 |
65 |
251 |
246 |
80 |
73 |
184 |
100 |
101 |
223 |
226 |
108 |
109 |
215 |
218 |
140 |
221 |
228 |
98 |
103 |
213 |
220 |
106 |
111 |
186 |
102 |
99 |
225 |
224 |
110 |
107 |
217 |
216 |
138 |
227 |
222 |
104 |
97 |
219 |
214 |
112 |
105 |
146 |
195 |
131 |
193 |
133 |
191 |
135 |
189 |
171 |
|
84 |
85 |
239 |
242 |
92 |
93 |
231 |
234 |
129 |
237 |
244 |
82 |
87 |
229 |
236 |
90 |
95 |
181 |
86 |
83 |
241 |
240 |
94 |
91 |
233 |
232 |
143 |
243 |
238 |
88 |
81 |
235 |
230 |
96 |
89 |
183 |
116 |
117 |
207 |
210 |
124 |
125 |
199 |
202 |
141 |
205 |
212 |
114 |
119 |
197 |
204 |
122 |
127 |
185 |
118 |
115 |
209 |
208 |
126 |
123 |
201 |
200 |
139 |
211 |
206 |
120 |
113 |
203 |
198 |
128 |
121 |
187 |
163 |
161 |
165 |
159 |
167 |
157 |
169 |
155 |
145 |
|
Each border corresponds with (16!) * (16!) = 4,4 1026 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 18 x 18 Magic Square shown above corresponds with 16! * 38416 = 4,7 1054, for each border or center cross.
29.4 Magic Squares (22 x 22)
After adding 42 to all elements of the normal Composed Magic Square (20 x 20, MC = 4010) shown in Section 22.4,
it can be completed with a 18 x 18 center cross based on the integers 1 ... 42 and 443 to 484:
MC = 5335
46 |
47 |
437 |
440 |
54 |
55 |
429 |
432 |
62 |
63 |
452 |
435 |
442 |
44 |
49 |
427 |
434 |
52 |
57 |
419 |
426 |
34 |
48 |
45 |
439 |
438 |
56 |
53 |
431 |
430 |
64 |
61 |
450 |
441 |
436 |
50 |
43 |
433 |
428 |
58 |
51 |
425 |
420 |
36 |
86 |
87 |
397 |
400 |
94 |
95 |
389 |
392 |
102 |
103 |
448 |
395 |
402 |
84 |
89 |
387 |
394 |
92 |
97 |
379 |
386 |
38 |
88 |
85 |
399 |
398 |
96 |
93 |
391 |
390 |
104 |
101 |
446 |
401 |
396 |
90 |
83 |
393 |
388 |
98 |
91 |
385 |
380 |
40 |
126 |
127 |
357 |
360 |
134 |
135 |
349 |
352 |
142 |
143 |
444 |
355 |
362 |
124 |
129 |
347 |
354 |
132 |
137 |
339 |
346 |
42 |
31 |
455 |
29 |
457 |
27 |
459 |
25 |
461 |
23 |
474 |
463 |
|
33 |
421 |
424 |
70 |
71 |
413 |
416 |
78 |
79 |
405 |
408 |
451 |
60 |
65 |
411 |
418 |
68 |
73 |
403 |
410 |
76 |
81 |
35 |
423 |
422 |
72 |
69 |
415 |
414 |
80 |
77 |
407 |
406 |
449 |
66 |
59 |
417 |
412 |
74 |
67 |
409 |
404 |
82 |
75 |
37 |
381 |
384 |
110 |
111 |
373 |
376 |
118 |
119 |
365 |
368 |
447 |
100 |
105 |
371 |
378 |
108 |
113 |
363 |
370 |
116 |
121 |
39 |
383 |
382 |
112 |
109 |
375 |
374 |
120 |
117 |
367 |
366 |
445 |
106 |
99 |
377 |
372 |
114 |
107 |
369 |
364 |
122 |
115 |
41 |
341 |
344 |
150 |
151 |
333 |
336 |
158 |
159 |
325 |
328 |
443 |
140 |
145 |
331 |
338 |
148 |
153 |
323 |
330 |
156 |
161 |
21 |
1 |
465 |
19 |
467 |
17 |
469 |
15 |
471 |
13 |
473 |
|
454 |
30 |
456 |
28 |
458 |
26 |
460 |
24 |
462 |
11 |
464 |
128 |
125 |
359 |
358 |
136 |
133 |
351 |
350 |
144 |
141 |
32 |
361 |
356 |
130 |
123 |
353 |
348 |
138 |
131 |
345 |
340 |
10 |
166 |
167 |
317 |
320 |
174 |
175 |
309 |
312 |
182 |
183 |
476 |
315 |
322 |
164 |
169 |
307 |
314 |
172 |
177 |
299 |
306 |
8 |
168 |
165 |
319 |
318 |
176 |
173 |
311 |
310 |
184 |
181 |
478 |
321 |
316 |
170 |
163 |
313 |
308 |
178 |
171 |
305 |
300 |
6 |
206 |
207 |
277 |
280 |
214 |
215 |
269 |
272 |
222 |
223 |
480 |
275 |
282 |
204 |
209 |
267 |
274 |
212 |
217 |
259 |
266 |
4 |
208 |
205 |
279 |
278 |
216 |
213 |
271 |
270 |
224 |
221 |
482 |
281 |
276 |
210 |
203 |
273 |
268 |
218 |
211 |
265 |
260 |
2 |
|
22 |
484 |
20 |
466 |
18 |
468 |
16 |
470 |
14 |
472 |
12 |
453 |
343 |
342 |
152 |
149 |
335 |
334 |
160 |
157 |
327 |
326 |
475 |
146 |
139 |
337 |
332 |
154 |
147 |
329 |
324 |
162 |
155 |
9 |
301 |
304 |
190 |
191 |
293 |
296 |
198 |
199 |
285 |
288 |
477 |
180 |
185 |
291 |
298 |
188 |
193 |
283 |
290 |
196 |
201 |
7 |
303 |
302 |
192 |
189 |
295 |
294 |
200 |
197 |
287 |
286 |
479 |
186 |
179 |
297 |
292 |
194 |
187 |
289 |
284 |
202 |
195 |
5 |
261 |
264 |
230 |
231 |
253 |
256 |
238 |
239 |
245 |
248 |
481 |
220 |
225 |
251 |
258 |
228 |
233 |
243 |
250 |
236 |
241 |
3 |
263 |
262 |
232 |
229 |
255 |
254 |
240 |
237 |
247 |
246 |
483 |
226 |
219 |
257 |
252 |
234 |
227 |
249 |
244 |
242 |
235 |
|
For n = 22 a non normal Magic Square (20 x 20, MC = 4850) can be constructed, which can be completed with a 22 x 22 center cross based on the consecutive integers 201 ... 284:
MC = 5335
4 |
5 |
479 |
482 |
12 |
13 |
471 |
474 |
20 |
21 |
252 |
477 |
484 |
2 |
7 |
469 |
476 |
10 |
15 |
461 |
468 |
234 |
6 |
3 |
481 |
480 |
14 |
11 |
473 |
472 |
22 |
19 |
250 |
483 |
478 |
8 |
1 |
475 |
470 |
16 |
9 |
467 |
462 |
236 |
44 |
45 |
439 |
442 |
52 |
53 |
431 |
434 |
60 |
61 |
248 |
437 |
444 |
42 |
47 |
429 |
436 |
50 |
55 |
421 |
428 |
238 |
46 |
43 |
441 |
440 |
54 |
51 |
433 |
432 |
62 |
59 |
246 |
443 |
438 |
48 |
41 |
435 |
430 |
56 |
49 |
427 |
422 |
240 |
84 |
85 |
399 |
402 |
92 |
93 |
391 |
394 |
100 |
101 |
244 |
397 |
404 |
82 |
87 |
389 |
396 |
90 |
95 |
381 |
388 |
242 |
231 |
255 |
229 |
257 |
227 |
259 |
225 |
261 |
223 |
274 |
263 |
|
233 |
463 |
466 |
28 |
29 |
455 |
458 |
36 |
37 |
447 |
450 |
251 |
18 |
23 |
453 |
460 |
26 |
31 |
445 |
452 |
34 |
39 |
235 |
465 |
464 |
30 |
27 |
457 |
456 |
38 |
35 |
449 |
448 |
249 |
24 |
17 |
459 |
454 |
32 |
25 |
451 |
446 |
40 |
33 |
237 |
423 |
426 |
68 |
69 |
415 |
418 |
76 |
77 |
407 |
410 |
247 |
58 |
63 |
413 |
420 |
66 |
71 |
405 |
412 |
74 |
79 |
239 |
425 |
424 |
70 |
67 |
417 |
416 |
78 |
75 |
409 |
408 |
245 |
64 |
57 |
419 |
414 |
72 |
65 |
411 |
406 |
80 |
73 |
241 |
383 |
386 |
108 |
109 |
375 |
378 |
116 |
117 |
367 |
370 |
243 |
98 |
103 |
373 |
380 |
106 |
111 |
365 |
372 |
114 |
119 |
221 |
201 |
265 |
219 |
267 |
217 |
269 |
215 |
271 |
213 |
273 |
|
254 |
230 |
256 |
228 |
258 |
226 |
260 |
224 |
262 |
211 |
264 |
86 |
83 |
401 |
400 |
94 |
91 |
393 |
392 |
102 |
99 |
232 |
403 |
398 |
88 |
81 |
395 |
390 |
96 |
89 |
387 |
382 |
210 |
124 |
125 |
359 |
362 |
132 |
133 |
351 |
354 |
140 |
141 |
276 |
357 |
364 |
122 |
127 |
349 |
356 |
130 |
135 |
341 |
348 |
208 |
126 |
123 |
361 |
360 |
134 |
131 |
353 |
352 |
142 |
139 |
278 |
363 |
358 |
128 |
121 |
355 |
350 |
136 |
129 |
347 |
342 |
206 |
164 |
165 |
319 |
322 |
172 |
173 |
311 |
314 |
180 |
181 |
280 |
317 |
324 |
162 |
167 |
309 |
316 |
170 |
175 |
301 |
308 |
204 |
166 |
163 |
321 |
320 |
174 |
171 |
313 |
312 |
182 |
179 |
282 |
323 |
318 |
168 |
161 |
315 |
310 |
176 |
169 |
307 |
302 |
202 |
|
222 |
284 |
220 |
266 |
218 |
268 |
216 |
270 |
214 |
272 |
212 |
253 |
385 |
384 |
110 |
107 |
377 |
376 |
118 |
115 |
369 |
368 |
275 |
104 |
97 |
379 |
374 |
112 |
105 |
371 |
366 |
120 |
113 |
209 |
343 |
346 |
148 |
149 |
335 |
338 |
156 |
157 |
327 |
330 |
277 |
138 |
143 |
333 |
340 |
146 |
151 |
325 |
332 |
154 |
159 |
207 |
345 |
344 |
150 |
147 |
337 |
336 |
158 |
155 |
329 |
328 |
279 |
144 |
137 |
339 |
334 |
152 |
145 |
331 |
326 |
160 |
153 |
205 |
303 |
306 |
188 |
189 |
295 |
298 |
196 |
197 |
287 |
290 |
281 |
178 |
183 |
293 |
300 |
186 |
191 |
285 |
292 |
194 |
199 |
203 |
305 |
304 |
190 |
187 |
297 |
296 |
198 |
195 |
289 |
288 |
283 |
184 |
177 |
299 |
294 |
192 |
185 |
291 |
286 |
200 |
193 |
|
Each center cross corresponds with (20!) * (20!) = 5,9 1036 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 5335
463 |
31 |
455 |
29 |
457 |
27 |
459 |
25 |
461 |
23 |
474 |
452 |
46 |
47 |
437 |
440 |
54 |
55 |
429 |
432 |
62 |
63 |
34 |
435 |
442 |
44 |
49 |
427 |
434 |
52 |
57 |
419 |
426 |
450 |
48 |
45 |
439 |
438 |
56 |
53 |
431 |
430 |
64 |
61 |
36 |
441 |
436 |
50 |
43 |
433 |
428 |
58 |
51 |
425 |
420 |
448 |
86 |
87 |
397 |
400 |
94 |
95 |
389 |
392 |
102 |
103 |
38 |
395 |
402 |
84 |
89 |
387 |
394 |
92 |
97 |
379 |
386 |
446 |
88 |
85 |
399 |
398 |
96 |
93 |
391 |
390 |
104 |
101 |
40 |
401 |
396 |
90 |
83 |
393 |
388 |
98 |
91 |
385 |
380 |
444 |
126 |
127 |
357 |
360 |
134 |
135 |
349 |
352 |
142 |
143 |
42 |
355 |
362 |
124 |
129 |
347 |
354 |
132 |
137 |
339 |
346 |
|
1 |
465 |
19 |
467 |
17 |
469 |
15 |
471 |
13 |
473 |
21 |
421 |
424 |
70 |
71 |
413 |
416 |
78 |
79 |
405 |
408 |
33 |
60 |
65 |
411 |
418 |
68 |
73 |
403 |
410 |
76 |
81 |
451 |
423 |
422 |
72 |
69 |
415 |
414 |
80 |
77 |
407 |
406 |
35 |
66 |
59 |
417 |
412 |
74 |
67 |
409 |
404 |
82 |
75 |
449 |
381 |
384 |
110 |
111 |
373 |
376 |
118 |
119 |
365 |
368 |
37 |
100 |
105 |
371 |
378 |
108 |
113 |
363 |
370 |
116 |
121 |
447 |
383 |
382 |
112 |
109 |
375 |
374 |
120 |
117 |
367 |
366 |
39 |
106 |
99 |
377 |
372 |
114 |
107 |
369 |
364 |
122 |
115 |
445 |
341 |
344 |
150 |
151 |
333 |
336 |
158 |
159 |
325 |
328 |
41 |
140 |
145 |
331 |
338 |
148 |
153 |
323 |
330 |
156 |
161 |
443 |
|
32 |
128 |
125 |
359 |
358 |
136 |
133 |
351 |
350 |
144 |
141 |
10 |
361 |
356 |
130 |
123 |
353 |
348 |
138 |
131 |
345 |
340 |
476 |
166 |
167 |
317 |
320 |
174 |
175 |
309 |
312 |
182 |
183 |
8 |
315 |
322 |
164 |
169 |
307 |
314 |
172 |
177 |
299 |
306 |
478 |
168 |
165 |
319 |
318 |
176 |
173 |
311 |
310 |
184 |
181 |
6 |
321 |
316 |
170 |
163 |
313 |
308 |
178 |
171 |
305 |
300 |
480 |
206 |
207 |
277 |
280 |
214 |
215 |
269 |
272 |
222 |
223 |
4 |
275 |
282 |
204 |
209 |
267 |
274 |
212 |
217 |
259 |
266 |
482 |
208 |
205 |
279 |
278 |
216 |
213 |
271 |
270 |
224 |
221 |
2 |
281 |
276 |
210 |
203 |
273 |
268 |
218 |
211 |
265 |
260 |
464 |
454 |
30 |
456 |
28 |
458 |
26 |
460 |
24 |
462 |
11 |
|
343 |
342 |
152 |
149 |
335 |
334 |
160 |
157 |
327 |
326 |
453 |
146 |
139 |
337 |
332 |
154 |
147 |
329 |
324 |
162 |
155 |
475 |
301 |
304 |
190 |
191 |
293 |
296 |
198 |
199 |
285 |
288 |
9 |
180 |
185 |
291 |
298 |
188 |
193 |
283 |
290 |
196 |
201 |
477 |
303 |
302 |
192 |
189 |
295 |
294 |
200 |
197 |
287 |
286 |
7 |
186 |
179 |
297 |
292 |
194 |
187 |
289 |
284 |
202 |
195 |
479 |
261 |
264 |
230 |
231 |
253 |
256 |
238 |
239 |
245 |
248 |
5 |
220 |
225 |
251 |
258 |
228 |
233 |
243 |
250 |
236 |
241 |
481 |
263 |
262 |
232 |
229 |
255 |
254 |
240 |
237 |
247 |
246 |
3 |
226 |
219 |
257 |
252 |
234 |
227 |
249 |
244 |
242 |
235 |
483 |
484 |
20 |
466 |
18 |
468 |
16 |
470 |
14 |
472 |
12 |
22 |
|
MC = 5335
263 |
231 |
255 |
229 |
257 |
227 |
259 |
225 |
261 |
223 |
274 |
252 |
4 |
5 |
479 |
482 |
12 |
13 |
471 |
474 |
20 |
21 |
234 |
477 |
484 |
2 |
7 |
469 |
476 |
10 |
15 |
461 |
468 |
250 |
6 |
3 |
481 |
480 |
14 |
11 |
473 |
472 |
22 |
19 |
236 |
483 |
478 |
8 |
1 |
475 |
470 |
16 |
9 |
467 |
462 |
248 |
44 |
45 |
439 |
442 |
52 |
53 |
431 |
434 |
60 |
61 |
238 |
437 |
444 |
42 |
47 |
429 |
436 |
50 |
55 |
421 |
428 |
246 |
46 |
43 |
441 |
440 |
54 |
51 |
433 |
432 |
62 |
59 |
240 |
443 |
438 |
48 |
41 |
435 |
430 |
56 |
49 |
427 |
422 |
244 |
84 |
85 |
399 |
402 |
92 |
93 |
391 |
394 |
100 |
101 |
242 |
397 |
404 |
82 |
87 |
389 |
396 |
90 |
95 |
381 |
388 |
|
201 |
265 |
219 |
267 |
217 |
269 |
215 |
271 |
213 |
273 |
221 |
463 |
466 |
28 |
29 |
455 |
458 |
36 |
37 |
447 |
450 |
233 |
18 |
23 |
453 |
460 |
26 |
31 |
445 |
452 |
34 |
39 |
251 |
465 |
464 |
30 |
27 |
457 |
456 |
38 |
35 |
449 |
448 |
235 |
24 |
17 |
459 |
454 |
32 |
25 |
451 |
446 |
40 |
33 |
249 |
423 |
426 |
68 |
69 |
415 |
418 |
76 |
77 |
407 |
410 |
237 |
58 |
63 |
413 |
420 |
66 |
71 |
405 |
412 |
74 |
79 |
247 |
425 |
424 |
70 |
67 |
417 |
416 |
78 |
75 |
409 |
408 |
239 |
64 |
57 |
419 |
414 |
72 |
65 |
411 |
406 |
80 |
73 |
245 |
383 |
386 |
108 |
109 |
375 |
378 |
116 |
117 |
367 |
370 |
241 |
98 |
103 |
373 |
380 |
106 |
111 |
365 |
372 |
114 |
119 |
243 |
|
232 |
86 |
83 |
401 |
400 |
94 |
91 |
393 |
392 |
102 |
99 |
210 |
403 |
398 |
88 |
81 |
395 |
390 |
96 |
89 |
387 |
382 |
276 |
124 |
125 |
359 |
362 |
132 |
133 |
351 |
354 |
140 |
141 |
208 |
357 |
364 |
122 |
127 |
349 |
356 |
130 |
135 |
341 |
348 |
278 |
126 |
123 |
361 |
360 |
134 |
131 |
353 |
352 |
142 |
139 |
206 |
363 |
358 |
128 |
121 |
355 |
350 |
136 |
129 |
347 |
342 |
280 |
164 |
165 |
319 |
322 |
172 |
173 |
311 |
314 |
180 |
181 |
204 |
317 |
324 |
162 |
167 |
309 |
316 |
170 |
175 |
301 |
308 |
282 |
166 |
163 |
321 |
320 |
174 |
171 |
313 |
312 |
182 |
179 |
202 |
323 |
318 |
168 |
161 |
315 |
310 |
176 |
169 |
307 |
302 |
264 |
254 |
230 |
256 |
228 |
258 |
226 |
260 |
224 |
262 |
211 |
|
385 |
384 |
110 |
107 |
377 |
376 |
118 |
115 |
369 |
368 |
253 |
104 |
97 |
379 |
374 |
112 |
105 |
371 |
366 |
120 |
113 |
275 |
343 |
346 |
148 |
149 |
335 |
338 |
156 |
157 |
327 |
330 |
209 |
138 |
143 |
333 |
340 |
146 |
151 |
325 |
332 |
154 |
159 |
277 |
345 |
344 |
150 |
147 |
337 |
336 |
158 |
155 |
329 |
328 |
207 |
144 |
137 |
339 |
334 |
152 |
145 |
331 |
326 |
160 |
153 |
279 |
303 |
306 |
188 |
189 |
295 |
298 |
196 |
197 |
287 |
290 |
205 |
178 |
183 |
293 |
300 |
186 |
191 |
285 |
292 |
194 |
199 |
281 |
305 |
304 |
190 |
187 |
297 |
296 |
198 |
195 |
289 |
288 |
203 |
184 |
177 |
299 |
294 |
192 |
185 |
291 |
286 |
200 |
193 |
283 |
284 |
220 |
266 |
218 |
268 |
216 |
270 |
214 |
272 |
212 |
222 |
|
Each border corresponds with (20!) * (20!) = 5,9 1036 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 22 x 22 Magic Square shown above corresponds with 25! * 38425 = 6,3 1089, for each border or center cross.
|