Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
10.0 Magic Squares (10 x 10)
As described in section 6.8, for any integer n, a magic square C of order 2n can be constructed from any n x n medjig-square A with each row, column, and main diagonal summing to 3n,
and any n x n magic square B, by application of the equations:
bi + n2 aj with i = 1, 2, ... n2 and j = 1, 2, ... 4n2.
The Medjig method of constructing a Magic Square of order 10 is as follows:
|
B (5 x 5)
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19
b20
b21
b22
b23
b24
b25
Medjig Square A (5 x 5)
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15
a16
a17
a18
a19
a20
a21
a22
a23
a24
a25
a26
a27
a28
a29
a30
a31
a32
a33
a34
a35
a36
a37
a38
a39
a40
a41
a42
a43
a44
a45
a46
a47
a48
a49
a50
a51
a52
a53
a54
a55
a56
a57
a58
a59
a60
a61
a62
a63
a64
a65
a66
a67
a68
a69
a70
a71
a72
a73
a74
a75
a76
a77
a78
a79
a80
a81
a82
a83
a84
a85
a86
a87
a88
a89
a90
a91
a92
a93
a94
a95
a96
a97
a98
a99
a100
Magic Square C (10 x 10)
b1+25*a1
b1+25*a2
b2+25*a3
b2+25*a4
b3+25*a5
b3+25*a6
b4+25*a7
b4+25*a8
b5+25*a9
b5+25*a10
b1+25*a11
b1+25*a12
b2+25*a13
b2+25*a14
b3+25*a15
b3+25*a16
b4+25*a17
b4+25*a18
b5+25*a19
b5+25*a20
b6+25*a21
b6+25*a22
b7+25*a23
b7+25*a24
b8+25*a25
b8+25*a26
b9+25*a27
b9+25*a28
b10+25*a29
b10+25*a30
b6+25*a31
b6+25*a32
b7+25*a33
b7+25*a34
b8+25*a35
b8+25*a36
b9+25*a37
b9+25*a38
b10+25*a39
b10+25*a40
b11+25*a41
b11+25*a42
b12+25*a43
b12+25*a44
b13+25*a45
b13+25*a46
b14+25*a47
b14+25*a48
b15+25*a49
b15+25*a50
b11+25*a51
b11+25*a52
b12+25*a53
b12+25*a54
b13+25*a55
b13+25*a56
b14+25*a57
b14+25*a58
b15+25*a59
b15+25*a60
b16+25*a61
b16+25*a62
b17+25*a63
b17+25*a64
b18+25*a65
b18+25*a66
b19+25*a67
b19+25*a68
b20+25*a69
b20+25*a70
b16+25*a71
b16+25*a72
b17+25*a73
b17+25*a74
b18+25*a75
b18+25*a76
b19+25*a77
b19+25*a78
b20+25*a79
b20+25*a80
b21+25*a81
b21+25*a82
b22+25*a83
b22+25*a84
b23+25*a85
b23+25*a86
b24+25*a87
b24+25*a88
b25+25*a89
b25+25*a90
b21+25*a91
b21+25*a92
b22+25*a93
b22+25*a94
b23+25*a95
b23+25*a96
b24+25*a97
b24+25*a98
b25+25*a99
b25+25*a100
The rows, columns and main diagonals of Square C sum to 2 times the corresponding sum of Magic Square B plus 25 times the corresponding sum of Medjig square A which results in s1 = 2 * 65 + 25 * 15 = 505.
|
B (5 x 5)
12
6
5
24
18
4
23
17
11
10
16
15
9
3
22
8
2
21
20
14
25
19
13
7
1
Medjig Square A (5 x 5)
0
2
0
1
0
2
3
2
2
3
1
3
3
2
3
1
0
1
1
0
0
3
1
3
3
0
0
1
1
3
2
1
0
2
2
1
3
2
0
2
3
0
0
1
2
3
0
3
3
0
1
2
3
2
1
0
2
1
2
1
1
2
3
0
1
3
2
1
2
0
3
0
2
1
0
2
0
3
3
1
3
0
2
0
3
2
2
0
0
3
1
2
1
3
0
1
3
1
1
2
Magic Square C (10 x 10)
12
62
6
31
5
55
99
74
68
93
37
87
81
56
80
30
24
49
43
18
4
79
48
98
92
17
11
36
35
85
54
29
23
73
67
42
86
61
10
60
91
16
15
40
59
84
3
78
97
22
41
66
90
65
34
9
53
28
72
47
33
58
77
2
46
96
70
45
64
14
83
8
52
27
21
71
20
95
89
39
100
25
69
19
88
63
57
7
1
76
50
75
44
94
13
38
82
32
26
51
Medjig Squares are described by the same linear equations as applicable for Magic Squares, however with magic sum 15:
a( 1)+a( 2)+a( 3)+a( 4)+a( 5)+a( 6)+a( 7)+a( 8)+a( 9)+a( 10) = 15
and following additional equations:
Resulting in the matrix representation:
|
a(91) = 15 - a(92) - a(93) - a(94) - a(95) - a(96) - a(97) - a(98) - a(99) - a(100) |
The linear equations shown above are ready to be solved, for the magic constant 15.
10.1.3 Concentric Magic Squares
The Medjig method of constructing a Concentric Magic Square of order 10 is as follows:
|
B (5 x 5)
25 5 8 24 3 4 16 11 12 22 6 9 13 17 20 7 14 15 10 19 23 21 18 2 1 Medjig Square A (5 x 5)
1 2 0 1 0 2 2 3 1 3 0 3 3 2 3 1 1 0 2 0 0 3 2 1 0 3 3 0 1 2 2 1 0 3 2 1 2 1 0 3 3 0 1 0 0 3 2 3 3 0 1 2 3 2 2 1 1 0 2 1 1 2 3 2 2 0 0 2 2 1 3 0 0 1 3 1 1 3 3 0 3 0 2 0 3 2 0 2 0 3 1 2 1 3 0 1 3 1 1 2 Magic Square C (10 x 10)
50 75 5 30 8 58 74 99 28 78 25 100 80 55 83 33 49 24 53 3 4 79 66 41 11 86 87 12 47 72 54 29 16 91 61 36 62 37 22 97 81 6 34 9 13 88 67 92 95 20 31 56 84 59 63 38 42 17 70 45 32 57 89 64 65 15 10 60 69 44 82 7 14 39 90 40 35 85 94 19 98 23 71 21 93 68 2 52 1 76 48 73 46 96 18 43 77 27 26 51
The Concentric Magic Squares resulting from the Medjig Square A shown above and 128 of the 23040 possible 5th order Concentric Magic Squares, are shown in Attachment 10.1.3.
10.1.4 Eccentric Magic Squares
The Medjig method of constructing an Eccentric Magic Square of order 10 is as follows:
|
B (5 x 5)
5 19 3 20 18 7 21 23 6 8 4 22 16 11 12 25 1 9 13 17 24 2 14 15 10 Medjig Square A (5 x 5)
0 2 0 1 0 3 1 3 2 3 1 3 3 2 2 1 2 0 1 0 3 0 1 3 3 0 0 1 3 1 1 2 0 2 1 2 3 2 0 2 2 3 0 1 2 1 0 3 3 0 1 0 3 2 0 3 2 1 2 1 1 2 3 0 1 0 0 3 2 3 3 0 2 1 3 2 2 1 1 0 0 1 2 3 3 2 2 0 0 2 3 2 1 0 0 1 3 1 1 3 Magic Square C (10 x 10)
5 55 19 44 3 78 45 95 68 93 30 80 94 69 53 28 70 20 43 18 82 7 46 96 98 23 6 31 83 33 32 57 21 71 48 73 81 56 8 58 54 79 22 47 66 41 11 86 87 12 29 4 97 72 16 91 61 36 62 37 50 75 76 1 34 9 13 88 67 92 100 25 51 26 84 59 63 38 42 17 24 49 52 77 89 64 65 15 10 60 99 74 27 2 14 39 90 40 35 85
The Eccentric Magic Squares resulting from the Medjig Square A shown above and 128 of the 3072 possible 5th order Eccentric Magic Squares, are shown in Attachment 10.1.4.
10.1.5 Almost Associated Magic Squares
The Medjig method of constructing an Almost Associated Magic Square of order 10 is as follows:
|
B (5 x 5)
25 23 2 11 4 7 9 12 16 21 6 8 13 18 20 5 10 14 17 19 22 15 24 3 1 Medjig Square A (5 x 5)
3 2 3 2 2 0 2 0 1 0 1 0 0 1 1 3 1 3 3 2 3 2 3 2 0 3 1 0 1 0 0 1 1 0 2 1 3 2 2 3 1 2 1 3 0 1 1 3 0 3 0 3 0 2 2 3 0 2 1 2 0 1 1 0 2 1 3 2 2 3 3 2 3 2 3 0 1 0 1 0 1 0 0 2 0 2 2 3 3 2 3 2 3 1 3 1 1 0 1 0 Magic Square C (10 x 10)
100 75 98 73 52 2 61 11 29 4 50 25 23 48 27 77 36 86 79 54 82 57 84 59 12 87 41 16 46 21 7 32 34 9 62 37 91 66 71 96 31 56 33 83 13 38 43 93 20 95 6 81 8 58 63 88 18 68 45 70 5 30 35 10 64 39 92 67 69 94 80 55 85 60 89 14 42 17 44 19 47 22 15 65 24 74 53 78 76 51 97 72 90 40 99 49 28 3 26 1
Attachment 10.2.5 shows a few examples of Almost Associated Magic Squares resulting from
the Associated Magic Square B shown above and miscellaneous Almost Associated Medjig Squares.
10.1.6 Magic Squares with Bimagic Main Diagonals
It can be proven that the Medjig method is not suitable for the construction of Bimagic Squares of order 10.
A numerical example is shown below: |
B (5 x 5)
25 10 3 5 22 4 23 7 15 16 12 11 14 19 9 18 8 20 2 17 6 13 21 24 1 Medjig Square A (5 x 5)
3 2 0 2 0 2 0 2 1 3 0 1 1 3 1 3 1 3 2 0 0 2 2 3 0 1 2 3 0 2 1 3 1 0 3 2 1 0 1 3 0 1 1 0 3 2 1 2 2 3 3 2 3 2 0 1 3 0 1 0 1 0 3 1 1 0 2 3 3 1 3 2 0 2 3 2 0 1 2 0 3 2 1 0 1 0 2 1 2 3 1 0 3 2 3 2 3 0 1 0 Magic Square C (10 x 10)
100 75 10 60 3 53 5 55 47 97 25 50 35 85 28 78 30 80 72 22 4 54 73 98 7 32 65 90 16 66 29 79 48 23 82 57 40 15 41 91 12 37 36 11 89 64 44 69 59 84 87 62 86 61 14 39 94 19 34 9 43 18 83 33 45 20 52 77 92 42 93 68 8 58 95 70 2 27 67 17 81 56 38 13 46 21 74 49 51 76 31 6 88 63 96 71 99 24 26 1
Attachment 10.1.7 shows a few 10 x 10 Magic Squares with Bimagic Diagonals,
which could be constructed based on the 5 x 5 Magic Squares described above.
10.1.7 Magic Squares with Bimagic Center Lines
Eight of the order 5 Magic Lines shown in Attachment 10.1.5 might return two adjacent order 10 Bimagic Lines.
A numerical example is shown below: |
B (5 x 5)
7 19 1 13 25 15 23 10 6 11 2 8 14 21 20 24 3 18 16 4 17 12 22 9 5 Medjig Square A (5 x 5)
1 2 0 2 2 3 0 1 1 3 0 3 1 3 0 1 2 3 0 2 0 2 1 2 2 3 0 2 0 3 1 3 0 3 0 1 1 3 2 1 2 1 2 0 1 0 3 1 3 2 3 0 3 1 3 2 2 0 1 0 1 0 1 0 2 3 0 3 3 2 3 2 3 2 1 0 2 1 1 0 1 0 1 0 3 2 2 1 3 2 3 2 3 2 1 0 3 0 1 0 Magic Square C (10 x 10)
32 57 19 69 51 76 13 38 50 100 7 82 44 94 1 26 63 88 25 75 15 65 48 73 60 85 6 56 11 86 40 90 23 98 10 35 31 81 61 36 52 27 58 8 39 14 96 46 95 70 77 2 83 33 89 64 71 21 45 20 49 24 28 3 68 93 16 91 79 54 99 74 78 53 43 18 66 41 29 4 42 17 37 12 97 72 59 34 80 55 92 67 87 62 47 22 84 9 30 5
Attachment 10.1.9 shows a few 10 x 10 Magic Squares with Bimagic Center Lines,
which could be constructed based on the 5 x 5 Magic Squares described above.
The linear equations shown in section 10.1.2 above can be applied in an Excel spreadsheet
(Ref. CnstrSngl10a).
|
Index | About the Author |