Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

10.2   Concentric, Eccentric and Inlaid Magic Squares

10.2.1 Concentric Magic Squares

In general an even Concentric Magic Square consists of 2 x 2 cells, around which borders can be constructed again and again.

A 10th order Concentric Magic Square consists of an embedded Magic Square of the 8th order with an embedded Magic Square of the 6th order with an embedded (Pan) Magic Square of the 4th order.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

a31

a32

a33

a34

a35

a36

a37

a38

a39

a40

a41

a42

a43

a44

a45

a46

a47

a48

a49

a50

a51

a52

a53

a54

a55

a56

a57

a58

a59

a60

a61

a62

a63

a64

a65

a66

a67

a68

a69

a70

a71

a72

a73

a74

a75

a76

a77

a78

a79

a80

a81

a82

a83

a84

a85

a86

a87

a88

a89

a90

a91

a92

a93

a94

a95

a96

a97

a98

a99

a100

With the inner 4 x 4 square pan magic, the embedded Magic Squares can be described by following linear equations:

a(82) =  404 - a(83) - a(84) - a(85) - a(86) - a(87) - a(88) - a(89)
a(73) =  303 - a(74) - a(75) - a(76) - a(77) - a(78)
a(72) =  101 - a(79)
a(64) =  202 - a(65) - a(66) - a(67)
a(63) =  101 - a(68)
a(62) =  101 - a(69)
a(56) =  202 - a(57) - a(66) - a(67)
a(55) =        a(57) - a(65) + a(67)
a(54) =      - a(57) + a(65) + a(66)
a(53) =  101 - a(58)
a(52) =  101 - a(59)
a(47) =  101 - a(65)
a(46) = -101 + a(65) + a(66) + a(67)
a(45) =  101 - a(67)
a(44) =  101 - a(66)
a(43) =  101 - a(48)
a(42) =  101 - a(49)
a(38) =  202 - a(48) - a(58) - a(68) + a(73) - a(78)
a(37) =  101 - a(57) + a(65) - a(67)
a(36) =  101 + a(57) - a(65) - a(66)
a(35) =  101 - a(57)
a(34) = -101 + a(57) + a(66) + a(67)
a(33) = -404 + a(48) + a(58) + a(68) + a(74) + a(75) + a(76) + a(77) + 2*a(78)
a(32) =  101 - a(39)
a(29) =  303 - a(39) - a(49) - a(59) - a(69) - a(79) + a(82) - a(89)
a(28) = -202 + a(74) + a(75) + a(76) + a(77) + a(78)
a(27) =  101 - a(77)
a(26) =  101 - a(76)
a(25) =  101 - a(75)
a(24) =  101 - a(74)
a(23) =  101 - a(78)
a(22) =  101 - a(29)
a(19) =  101 - a(82)
a(18) =  101 - a(88)
a(17) =  101 - a(87)
a(16) =  101 - a(86)
a(15) =  101 - a(85)
a(14) =  101 - a(84)
a(13) =  101 - a(83)
a(12) =  101 - a(89)

which can be completed with the equations describing the outer border, which results in following linear equations:

a(91) =  505 - a(92) - a(93) - a(94) - a(95) - a(96) - a(97) - a(98) - a(99) - a(100)
a(82) =  404 - a(83) - a(84) - a(85) - a(86) - a(87) - a(88) - a(89)
a(81) =  101 - a(90)
a(73) =  303 - a(74) - a(75) - a(76) - a(77) - a(78)
a(72) =  101 - a(79)
a(71) =  101 - a(80)
a(64) =  202 - a(65) - a(66) - a(67)
a(63) =  101 - a(68)
a(62) =  101 - a(69)
a(61) =  101 - a(70)
a(56) =  202 - a(57) - a(66) - a(67)
a(55) =        a(57) - a(65) + a(67)
a(54) =      - a(57) + a(65) + a(66)
a(53) =  101 - a(58)
a(52) =  101 - a(59)
a(51) =  101 - a(60)
a(47) =  101 - a(65)
a(46) = -101 + a(65) + a(66) + a(67)
a(45) =  101 - a(67)
a(44) =  101 - a(66)
a(43) =  101 - a(48)
a(42) =  101 - a(49)
a(41) =  101 - a(50)
a(38) =  202 - a(48) - a(58) - a(68) + a(73) - a(78)
a(37) =  101 - a(57) + a(65) - a(67)
a(36) =  101 + a(57) - a(65) - a(66)
a(35) =  101 - a(57)
a(34) = -101 + a(57) + a(66) + a(67)
a(33) = -404 + a(48) + a(58) + a(68) + a(74) + a(75) + a(76) + a(77) + 2*a(78)
a(32) =  101 - a(39)
a(31) =  101 - a(40)
a(29) =  303 - a(39) - a(49) - a(59) - a(69) - a(79) + a(82) - a(89)
a(28) = -202 + a(74) + a(75) + a(76) + a(77) + a(78)
a(27) =  101 - a(77)
a(26) =  101 - a(76)
a(25) =  101 - a(75)
a(24) =  101 - a(74)
a(23) =  101 - a(78)
a(22) =  101 - a(29)
a(21) =  101 - a(30)
a(20) =  404 - a(30) - a(40) - a(50) - a(60) - a(70) - a(80) - a(90) + a(91) - a(100)
a(19) =  101 - a(82)
a(18) =  101 - a(88)
a(17) =  101 - a(87)
a(16) =  101 - a(86)
a(15) =  101 - a(85)
a(14) =  101 - a(84)
a(13) =  101 - a(83)
a(12) =  101 - a(89)
a(11) =  101 - a(20)
a(10) =  101 - a(91)
a( 9) =  101 - a(99)
a( 8) =  101 - a(98)
a( 7) =  101 - a(97)
a( 6) =  101 - a(96)
a( 5) =  101 - a(95)
a( 4) =  101 - a(94)
a( 3) =  101 - a(93)
a( 2) =  101 - a(92)
a( 1) =  101 - a(100)

which can be applied in an Excel spreadsheet (Ref. CnstrSngl10b).

Note: The Embedded Magic Square is based on the consecutive integers 19, 20, ... 82.

With a(74), a(78), the variables of the two exterior borders and the 4th order most inner Pan Magic Square constant, an optimized guessing routine (MgcSqr10b), produced 1440 Magic Squares in 242 seconds which are shown in Attachment 10.2.1.

With the 8th order embedded Magic Square constant, while varying a(92), a(93), a(94), a(30), a(40) and a(50), the same routine produced 1728 Magic Squares within 161 seconds, which are shown in Attachment 10.2.2.

10.2.2 Bordered Magic Squares

Also other Magic Squares of the 8th order as described and constructed in Section 8.1 thru Section 8.5, can be used as Center Squares for 10th order Bordered Magic Squares.

The Embedded Magic Squares will have a Magic Sum s8 = 404 and might be based on the consecutive integers 19, 20, ... 82.

Attachment 10.2.6 contains - based on some of the described Magic Squares of order 8 - examples of Bordered Magic Squares for the first occurring border.

10.2.3 Eccentric Magic Squares

An Eccentric Magic Square can be defined as a Magic Corner Square of order n, supplemented with two or more (i) rows and columns to a Magic Square of order (n + i).

A 10th order Eccentric Magic Square consists of one Magic Corner Square of the 8th order, supplemented with two rows and two columns.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

a31

a32

a33

a34

a35

a36

a37

a38

a39

a40

a41

a42

a43

a44

a45

a46

a47

a48

a49

a50

a51

a52

a53

a54

a55

a56

a57

a58

a59

a60

a61

a62

a63

a64

a65

a66

a67

a68

a69

a70

a71

a72

a73

a74

a75

a76

a77

a78

a79

a80

a81

a82

a83

a84

a85

a86

a87

a88

a89

a90

a91

a92

a93

a94

a95

a96

a97

a98

a99

a100

Rather than starting with the equations of the Magic Corner Square, the equations of the supplementary rows and columns can be used as a starting point for the generation of Eccentric Magic Squares.

The supplementary rows and columns can be described by following linear equations:

a( 1) + a( 2) + a( 3) + a( 4) + a( 5) + a( 6) + a( 7) + a( 8) + a( 9) + a(10) = 505
a(11) + a(12) + a(13) + a(14) + a(15) + a(16) + a(17) + a(18) + a(19) + a(20) = 505
a( 1) + a(11) + a(21) + a(31) + a(41) + a(51) + a(61) + a(71) + a(81) + a(91) = 505
a( 2) + a(12) + a(22) + a(32) + a(42) + a(52) + a(62) + a(72) + a(82) + a(92) = 505
a(10) + a(19) + a(28) + a(37) + a(46) + a(55) + a(64) + a(73) + a(82) + a(91) = 505
a( 1) + a(12) = 101
a(21) + a(22) = 101
a(31) + a(32) = 101
a(41) + a(42) = 101
a(51) + a(52) = 101
a(61) + a(62) = 101
a(71) + a(72) = 101
a(81) + a(82) = 101
a(91) + a(92) = 101
a( 3) + a(13) = 101
a( 4) + a(14) = 101
a( 5) + a(15) = 101
a( 6) + a(16) = 101
a( 7) + a(17) = 101
a( 8) + a(18) = 101
a( 9) + a(19) = 101
a(10) + a(20) = 101

Which can be reduced, by means of row and column manipulations, to:

a(91) = 101 - a(92)
a(81) = 101 - a(82)
a(71) = 101 - a(72)
a(61) = 101 - a(62)
a(51) = 101 - a(52)
a(41) = 101 - a(42)
a(31) = 101 - a(32)
a(21) = 101 - a(22)
a(19) = 404 + a(20) - a(28) - a(37) - a(46) - a(55) - a(64) - a(73) - a(82) - a(91)
a(12) = 50.5 + 0.5*(- a(13) - a(14) - a(15) - a(16) - a(17) - a(18) - a(19) - a(20) +
                            + a(21) + a(31) + a(41) + a(51) + a(61) + a(71) + a(81) + a(91))
a(11) = 505 - a(12) - a(13) - a(14) - a(15) - a(16) - a(17) - a(18) - a(19) - a(20)
a(10) = 101 - a(20)
a( 9) = 101 - a(19)
a( 8) = 101 - a(18)
a( 7) = 101 - a(17)
a( 6) = 101 - a(16)
a( 5) = 101 - a(15)
a( 4) = 101 - a(14)
a( 3) = 101 - a(13)
a( 2) = 101 - a(11)
a( 1) = 101 - a(12)

The linear equations, deducted above, can be applied in an Excel spreadsheet. Following typical cases have been considered:

- The 8th order Magic Corner Square is an Eccentric Magic Square itself (ref. CnstrSngl10c);
- The 8th order Magic Corner Square is a  Pan Magic Square (ref. CnstrSngl10d).

Note: The Magic Corner Square is based on the consecutive integers 19, 20, ... 82.

In both cases it is obvious that the number of Eccentric Magic Squares is determined by the sum s2 of the values of the key variables a(28), a(37), a(46), a(55), a(64) and a(73).

An optimized guessing routine (MgcSqr10c) produced, with the Eccentric Magic Corner Square of the 8th order as shown in the first Spreadsheet Solution above constant, while varying the variables a(13), a(14), a(15), a(22), a(32) and a(42), 1800 Eccentric Magic Squares within 150 seconds, which are shown in Attachment 10.2.3.

The same routine produced, based on óne Pan Magic Corner Square of the eighth order constant and while varying the same variables 504 Eccentric Magic Squares within 52 seconds, which are shown in Attachment 10.2.4.

10.2.4 Order 3 Square Inlays (4 ea)

The 10th order Inlaid Magic Square shown below, contains four each 3th order Simple Magic Square Inlays with Magic Sums s(1) = 111, s(2) = 201, s(3) = 102 and s(4) = 192.

86 5 96 19 40 20 88 9 70 72
1 36 28 47 2 90 66 78 57 100
99 48 37 26 87 4 58 67 76 3
22 27 46 38 59 81 77 56 68 31
21 92 95 89 83 71 10 11 15 18
82 97 94 91 30 17 8 12 14 60
62 35 23 44 39 41 65 73 54 69
42 43 34 25 32 52 53 64 75 85
61 24 45 33 49 50 74 55 63 51
29 98 7 93 84 79 6 80 13 16
111 201
102 192

The relation between the Magic Sums s(1), s(2), s(3) and s(4) is:

s(1) + s(2) + s(3) + s(4) = 6 * s10 / 5

With s10 = 505 the Magic Sum of the 10th order Inlaid Magic Square.

The 3th order Simple Magic Square Inlays can be constructed by means of suitable selected Latin Squares based on the two 3th order magic series {2, 3, 4} and {5, 6, 7} as illustrated below:

A
5 7 6 5 7 6
7 6 5 7 6 5
6 5 7 6 5 7
4 2 3 4 2 3
2 3 4 2 3 4
3 4 2 3 4 2
B = R(A)
3 2 4 6 7 5
4 3 2 5 6 7
2 4 3 7 5 6
3 2 4 6 7 5
4 3 2 5 6 7
2 4 3 7 5 6
M = A + 10 * B + 1
36 28 47 66 78 57
48 37 26 58 67 76
27 46 38 77 56 68
35 23 44 65 73 54
43 34 25 53 64 75
24 45 33 74 55 63

The remainder of the 10th order Inlaid Magic Square ('Window') can be completed based on the defining equations as incorporated in procedure Inlaid103.

The square shown above corresponds with 84 * (3!)4 = 5.308.416 solutions, which can be obtained by selecting other aspects of the four inlays and variation of the window.

Attachment 10.2.7 shows a few more order 10 Inlaid Magic Squares for miscellaneous order 3 Inlays, which can be constructed based on order 8 Inlaid Magic Squares as discussed in Section 8.8.6.

10.2.5 Order 4 Pan Magic Square Inlays (4 ea)

The 10th order Inlaid Magic Square shown below, contains four each 4th order Pan Magic Square Inlays with Magic Sums s(1) = 220, s(2) = 180, s(3) = 224 and s(4) = 184.

100 10 20 30 40 60 71 80 91 3
6 84 22 68 46 74 12 58 36 99
8 66 48 82 24 56 38 72 14 97
9 42 64 26 88 32 54 16 78 96
94 28 86 44 62 18 76 34 52 11
2 85 23 69 47 75 13 59 37 95
5 67 49 83 25 57 39 73 15 92
90 43 65 27 89 33 55 17 79 7
93 29 87 45 63 19 77 35 53 4
98 51 41 31 21 81 70 61 50 1
220 180
224 184

The relation between the Magic Sums s(1), s(2), s(3) and s(4) is:

s(1) + s(2) + s(3) + s(4) = 8 * s10 / 5

With s10 = 505 the Magic Sum of the 10th order Inlaid Magic Square.

The 4th order Pan Magic Square Inlays can be constructed by means of suitable selected Latin Diagonal Squares based on the two 4th order magic series {1, 3, 5, 7} and {2, 4, 6, 8} as illustrated below:

A
3 1 7 5 3 1 7 5
5 7 1 3 5 7 1 3
1 3 5 7 1 3 5 7
7 5 3 1 7 5 3 1
4 2 8 6 4 2 8 6
6 8 2 4 6 8 2 4
2 4 6 8 2 4 6 8
8 6 4 2 8 6 4 2
B = R(A)
8 2 6 4 7 1 5 3
6 4 8 2 5 3 7 1
4 6 2 8 3 5 1 7
2 8 4 6 1 7 3 5
8 2 6 4 7 1 5 3
6 4 8 2 5 3 7 1
4 6 2 8 3 5 1 7
2 8 4 6 1 7 3 5
M = A + 10 * B + 1
84 22 68 46 74 12 58 36
66 48 82 24 56 38 72 14
42 64 26 88 32 54 16 78
28 86 44 62 18 76 34 52
85 23 69 47 75 13 59 37
67 49 83 25 57 39 73 15
43 65 27 89 33 55 17 79
29 87 45 63 19 77 35 53

The remainder of the 10th order Inlaid Magic Square ('Border') can be completed based on the defining equations as incorporated in procedure Inlaid104.

The square shown above corresponds with 3844 * (4!)4 = 7,214 1015 solutions, which can be obtained by selecting other aspects of the four inlays and variation of the border.

10.2.6 Order 5, 6 and 7 Single Magic Square Inlays

The construction of Order 10 Simple Magic Squares with Order 5, 6 or 7 Single Magic Square Inlays will be discussed in Sections 10.2.12, 13 and 14.

10.2.7 Spreadsheet Solutions

The linear equations deducted in previous sections, have been applied in following Excel Spread Sheets:

  • CnstrSngl10b, Magic Squares of order 10, Concentric Squares

  • CnstrSngl10c, Magic Squares of order 10, Eccentric Corner Square

  • CnstrSngl10d, Magic Squares of order 10, Pan Magic Corner Square

Only the red figures have to be “guessed” to construct one of the applicable Magic Squares of the 10th order (wrong solutions are obvious).


Vorige Pagina Volgende Pagina Index About the Author