Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
10.2 Construction Methods, Inlaid Magic Squares
10.2.11 Simple Magic Squares (10 x 10)
Simple Magic Squares of order 10 can be constructed very efficiently with the Generator Principle, as applied for the construction of Bimagic Squares
(ref. Section 15).
Suitable Generators for order 10 Magic Squares can be constructed semi-automatically
(ref. CnstrGen10).
|
Generator
1 2 3 4 25 92 93 94 95 96 5 6 7 8 9 76 97 98 99 100 10 11 12 13 34 83 84 85 86 87 14 15 16 17 18 67 88 89 90 91 19 20 21 22 46 73 74 75 77 78 23 24 26 27 28 55 79 80 81 82 29 30 31 32 57 63 64 65 66 68 33 35 36 37 38 44 69 70 71 72 39 40 42 51 52 53 54 56 58 60 41 43 45 47 48 49 50 59 61 62 Semi Magic Square
1 2 3 4 25 92 93 94 95 96 100 99 98 97 76 9 8 7 6 5 10 11 12 13 34 83 84 85 86 87 91 90 89 88 67 18 17 16 15 14 19 20 21 22 46 73 74 75 77 78 82 81 80 79 55 28 27 26 24 23 29 30 31 32 57 63 64 65 66 68 72 71 70 69 44 38 37 36 35 33 39 40 42 51 52 53 54 56 58 60 62 61 59 50 49 48 47 45 43 41 Simple Magic Square
1 3 92 94 25 95 96 93 4 2 10 12 83 85 34 86 87 84 13 11 19 21 73 75 46 77 78 74 22 20 29 31 63 65 57 66 68 64 32 30 62 59 48 45 49 43 41 47 50 61 39 42 53 56 52 58 60 54 51 40 72 70 38 36 44 35 33 37 69 71 82 80 28 26 55 24 23 27 79 81 91 89 18 16 67 15 14 17 88 90 100 98 9 7 76 6 5 8 97 99
The Semi Magic Square shown above results in numerous Essential Different Magic Squares.
The first twelve sets of potential diagonals are shown in
Attachment 10.2.11.
The resulting number of transformations, excluding the 180o rotated aspects, is 32/2 * 120 = 1920.
10.2.12 Simple Magic Squares (10 x 10) Order 10 Simple Magic Squares with order 5 Magic Square Inlay(s) can be constructed with the Generator Method, as illustrated by following example (s5 = 250): |
Generator
90 8 98 6 48 7 9 53 86 100 55 3 95 1 96 11 12 56 83 93 49 46 50 54 51 13 14 57 80 91 4 99 5 97 45 15 16 47 88 89 52 94 2 92 10 17 18 58 75 87 19 20 21 22 23 68 81 82 84 85 24 25 26 27 28 65 76 77 78 79 29 30 31 32 33 60 71 72 73 74 34 35 36 37 38 59 61 66 69 70 39 40 41 42 43 44 62 63 64 67 Semi Magic Square
90 8 98 6 48 7 9 53 86 100 55 3 95 1 96 93 83 56 12 11 49 46 50 54 51 57 91 14 80 13 4 99 5 97 45 89 88 47 16 15 52 94 2 92 10 18 17 75 58 87 19 20 21 22 23 68 82 84 81 85 79 77 78 65 76 28 27 26 25 24 29 30 33 60 74 32 31 72 71 73 66 61 59 69 38 70 37 36 35 34 62 67 64 39 44 43 40 42 41 63 Simple Magic Square
90 8 98 6 48 12 93 56 11 83 55 3 95 1 96 16 89 47 15 88 49 46 50 54 51 58 18 75 87 17 4 99 5 97 45 86 7 53 100 9 52 94 2 92 10 80 57 14 13 91 23 22 21 19 20 81 68 84 85 82 76 65 78 79 77 25 28 26 24 27 74 60 33 29 30 71 32 72 73 31 38 69 59 66 61 35 70 36 34 37 44 39 64 62 67 41 43 42 63 40
The construction method is as described in Section 10.2.11 above, with exception of the last step (main diagonals):
The applied Square Inlay is an order 5 Associated Magic Square with order 3 Diamond Inlay.
10.2.13 Simple Magic Squares (10 x 10) Order 10 Simple Magic Squares with order 6 Magic Square Inlay(s) can be constructed with the Generator Method, as illustrated by following example (s6 = 300): |
Generator
5 55 84 17 43 96 9 10 89 97 86 54 7 92 48 13 11 12 82 100 20 40 99 2 58 81 15 18 78 94 83 57 4 95 45 16 21 22 71 91 8 52 87 14 46 93 23 24 68 90 98 42 19 80 60 1 25 26 66 88 27 28 29 30 31 44 75 77 79 85 32 33 34 35 36 47 65 73 74 76 37 38 39 41 49 50 51 59 69 72 3 6 53 56 61 62 63 64 67 70 Semi Magic Square
5 55 84 17 43 96 97 89 9 10 86 54 7 92 48 13 100 82 11 12 20 40 99 2 58 81 15 18 94 78 83 57 4 95 45 16 22 21 71 91 8 52 87 14 46 93 23 24 68 90 98 42 19 80 60 1 26 25 88 66 75 28 29 30 31 44 79 85 77 27 76 65 34 74 73 47 35 36 32 33 51 59 72 38 39 50 41 69 49 37 3 53 70 63 62 64 67 56 6 61 Simple Magic Square
5 55 84 17 43 96 94 15 78 18 86 54 7 92 48 13 71 22 91 21 20 40 99 2 58 81 9 97 10 89 83 57 4 95 45 16 11 100 12 82 8 52 87 14 46 93 68 23 90 24 98 42 19 80 60 1 88 26 66 25 75 30 28 29 31 44 77 79 27 85 76 74 65 34 73 47 32 35 33 36 51 38 59 72 39 50 49 41 37 69 3 63 53 70 62 64 6 67 61 56
The construction method is as described in Section 10.2.11 above, with exception of the last step (main diagonals):
The applied Square Inlay is an order 6 Most Perfect Magic Square.
10.2.14 Simple Magic Squares (10 x 10) Order 10 Simple Magic Squares with order 7 Magic Square Inlay(s) can be constructed with a comparable method, as illustrated by following example (s7 = 350): |
Semi Magic Square
81 24 30 34 70 40 71 98 55 2 23 25 31 89 67 41 74 5 53 97 79 50 68 15 36 73 29 52 4 99 80 76 64 19 38 45 28 56 96 3 21 26 62 90 39 66 46 92 57 6 22 77 63 83 35 43 27 51 9 95 44 72 32 20 65 42 75 18 49 88 58 59 60 48 17 78 37 54 87 7 86 84 82 93 47 61 33 10 1 8 11 12 13 14 91 16 85 69 94 100 Simple Magic Square
81 24 30 34 70 40 71 98 55 2 23 25 31 89 67 41 74 5 53 97 79 50 68 15 36 73 29 52 4 99 80 76 64 19 38 45 28 56 96 3 21 26 62 90 39 66 46 92 57 6 22 77 63 83 35 43 27 51 9 95 44 72 32 20 65 42 75 18 49 88 37 58 78 59 60 48 17 54 87 7 33 86 61 84 82 93 47 10 1 8 85 11 16 12 13 14 91 69 94 100
The construction method can be summarised as follows:
The Order 7 Simple Magic Square Inlay might be constructed with the Generator Method as discussed above for order 10 Simple Magic Squares
(ref. Section 10.2.11).
|
Index | About the Author |