Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
When a Magic Square contains repeated wave type patterns (see below) summing to the Magic Sum s1, it is called a V type ZigZag Magic Square.
14.15.1 Magic Squares (4 x 4)
The defining equations for a Two Way (Top/Bottom) V type ZigZag Magic Square of order 4 can be written as:
a(11) = s1 - a(12) - a(15) - a(16) a( 7) = -s1 + a( 8) + 2*a(12) + a(15) + a(16) a( 4) = s1 - a( 8) - a(12) - a(16) a( 3) = s1 - a( 8) - a(12) - a(15) a(14) = 0.5 * s1 - a(16) a(9) = 0.5 * s1 - a(11) a(13) = 0.5 * s1 - a(15) a(5) = 0.5 * s1 - a( 7) a(10) = 0.5 * s1 - a(12) a(2) = 0.5 * s1 - a( 4) a( 6) = 0.5 * s1 - a( 8) a(1) = 0.5 * s1 - a( 3)
which illustrate the consequential symmetry (column symmetrical).
14.15.2 Magic Squares (5 x 5)
The defining equations for a Two Way (Top/Bottom) V type ZigZag Magic Square of order 5 can be written as:
a( 1) = 0.6 * s1 - a( 3) - a( 5) a( 2) = 0.4 * s1 - a( 4) a( 3) = 2*a(13) - a(23) a( 4) = 2 * s1 - a(10) + a(13) - a(14) - a(15) - 2 * a(19) - a(20) - a(23) - a(24) - 2 * a(25) a( 5) = s1 - a(10) - a(15) - a(20) - a(25) a( 6) = 0.6 * s1 - a( 8) - a(10) a( 8) = s1 - 3 * a(13) - a(18) a( 7) = 0.4 * s1 - a( 9) a( 9) = - s1 + a(10) - a(13) + a(15) + a(19) + a(20) + a(23) + 2 * a(25) a(12) = 0.4 * s1 - a(14) a(11) = 0.6 * s1 - a(13) - a(15) a(17) = 0.4 * s1 - a(19) a(16) = 0.6 * s1 - a(18) - a(20) a(22) = 0.4 * s1 - a(24) a(21) = 0.6 * s1 - a(23) - a(25)
The consequential symmetry (Columns 2 - 4) is worth to be noticed and the reason that Two Way V type ZigZag Magic Squares of the fifth order can't be Associated or Pan Magic.
Subject equations can be incorporated in a routine to generate Two Way V type ZigZag Magic Squares
(ref. ZigZag5).
14.15.3 Magic Squares (6 x 6)
Rectangular Compact, Row Symmetric, Pan Magic Squares as deducted and discussed in
Section 14.4.34
are Two Way V type ZigZag.
The defining equations for a Four Way V type ZigZag Pan Magic Square of order 6 can be written as:
a(19) = - s1 / 3 + a(28) + a(33) + a(35) a(20) = - s1 / 3 + a(29) + a(34) + a(36) a(21) = s1 / 6 + a(30) - a(33) a(22) = 2 * s1 / 3 - a(27) - a(29) - a(34) a(23) = 2 * s1 / 3 - a(28) - a(30) - a(35) a(24) = s1 / 6 + a(27) - a(36) a(25) = s1 / 2 - a(27) - a(29) a(26) = s1 / 2 - a(28) - a(30) a(31) = s1 / 2 - a(33) - a(35) a(32) = s1 / 2 - a(34) - a(36)
which illustrate the consequential symmetry (complete).
Four Way V type ZigZag Magic Square of order 6 can be constructed by transformation of Composed Magic Squares
(ref. Section 14.4.10).
A1
Attachment 14.8.4, Simple Magic Squares, Composed of Semi Magic Sub Squares
and will return respectively:
Each suitable set of Semi Magic Sub Squares corresponds with
24 * 124 = 497664
Prime Number Four Way V type ZigZag Simple Magic Squares of order 6.
Each suitable set of Anti Symmetric Semi Magic Sub Squares corresponds with
8 * 122 = 1152 Prime Number Four Way V type ZigZag Associated Magic Squares of order 6.
Each suitable set of Anti Symmetric Semi Magic Sub Squares corresponds with
8 * 122 = 1152 Prime Number Four Way V type ZigZag Crosswise Symmetric Magic Squares of order 6.
Although Two and Four Way V type ZigZag Simple Magic Squares of order 7 do exist, this section is limited to seventh order Ultra and Associated Magic Squares.
The defining equations for a Two Way (Top/Bottom) V type ZigZag Ultra Magic Square of order 7 can be written as: a(44) = 3*s1/7 - a(46) - a(48) a(43) = 4*s1/7 - a(45) - a(47) - a(49) a(38) = s1/7 - a(40) + a(45) - a(46) + a(47) a(37) = 3*s1/7 - a(39) - a(41) a(36) = 3*s1/7 - a(42) - a(45) + a(46) - a(47) a(35) = 6*s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = 12*s1/7 - a(39) - a(40) - 2 * a(41) - a(42) + a(45) - 2 * a(46) - a(47) - 3 * a(48) - a(49) a(33) = 10*s1/7 - a(39) - 2 * a(40) - a(41) + a(45) - 2 * a(46) - a(47) - 2 * a(48) - a(49) a(32) = 2*s1/7 - a(45) + a(46) - a(47) a(31) =- 5*s1/7 + 2 * a(40) + a(41) - 2 * a(45) + 2 * a(46) + 2 * a(48) + a(49) a(30) =-11*s1/7 + a(39) + a(40) + 2 * a(41) + a(42) + a(46) + 2 * a(47) + 3 * a(48) + a(49) a(29) =- s1 + a(39) + a(41) + a(42) + a(45) + 2 * a(47) + a(48) + a(49) a(28) =- 5*s1/7 + a(39) + 2 * a(41) - a(45) + a(46) + a(47) + 2 * a(48) a(27) =-16*s1/7 + a(39) + 2 * a(40) + 2 * a(41) + 2 * a(42) - a(45) + 2*a(46) + 3*a(47) + 4*a(48) + 2*a(49) a(26) =-13*s1/7 + a(39) + 2 * a(40) + 2 * a(41) - a(45) + 3 * a(46) + a(47) + 4 * a(48) + 2*a(49) a(25) = s1/7
Subject equations can be incorporated in a routine to generate Two Way V type ZigZag Ultra Magic Squares
(ref. ZigZag7a).
Associated Magic Squares of order 7 with Square Inlays of Order 3 and 4 - as deducted and discussed in
Section 14.5.7 - are Four Way V type ZigZag.
14.15.5 Magic Squares (8 x 8)
Complete Pan Magic Squares
Four Way V type ZigZag Magic Squares of order 8 can be constructed by transformation of Composed Magic Squares
(ref. Section 14.6.1).
If the 4 Sub Squares of Square A are Pan Magic,
the resulting Square B will be Pan Magic, Complete and 4 x 4 Compact.
17.15.6 Magic Squares (9 x 9)
Associated Magic Squares of order 9 with Square Inlays of Order 4 and 5 - as deducted and discussed in
Section 14.7.13 - are Four Way V type ZigZag.
14.15.7 Magic Squares (10 x 10)
Four Way V type ZigZag Magic Square of order 10 can be constructed by transformation of Composed Magic Squares
(ref. Section 14.8.13).
A1
Attachment 14.8.66, Associated Magic Squares, Composed of Anti Symmetric Magic Sub Squares
and will return respectively:
|
A1 (Associated)
4153 3823 877 829 3793 1861 2953 1423 2269 4969 1783 661 2797 3631 4603 4933 2161 1459 1663 3259 1129 5077 1933 2677 2659 271 5233 4813 2389 769 3019 727 4759 4639 331 4657 277 3697 2503 2341 3391 3187 3109 1699 2089 1753 2851 2083 4651 2137 3253 739 3307 2539 3637 3301 3691 2281 2203 1999 3049 2887 1693 5113 733 5059 751 631 4663 2371 4621 3001 577 157 5119 2731 2713 3457 313 4261 2131 3727 3931 3229 457 787 1759 2593 4729 3607 421 3121 3967 2437 3529 1597 4561 4513 1567 1237 B1 (Associated)
4153 1861 3823 2953 877 1423 829 2269 3793 4969 3253 3301 739 3691 3307 2281 2539 2203 3637 1999 1783 4933 661 2161 2797 1459 3631 1663 4603 3259 3049 5059 2887 751 1693 631 5113 4663 733 2371 1129 271 5077 5233 1933 4813 2677 2389 2659 769 4621 2731 3001 2713 577 3457 157 313 5119 4261 3019 4657 727 277 4759 3697 4639 2503 331 2341 2131 787 3727 1759 3931 2593 3229 4729 457 3607 3391 1753 3187 2851 3109 2083 1699 4651 2089 2137 421 1597 3121 4561 3967 4513 2437 1567 3529 1237
Each suitable set of Anti Symmetric Magic Sub Squares corresponds with numerous Prime Number Four Way V type ZigZag Assiciated Magic Squares of order 10.
|
A2 (PM Complete)
4153 3823 877 829 3793 4969 2269 1423 2953 1861 1783 661 2797 3631 4603 3259 1663 1459 2161 4933 1129 5077 1933 2677 2659 769 2389 4813 5233 271 3019 727 4759 4639 331 2341 2503 3697 277 4657 3391 3187 3109 1699 2089 2137 4651 2083 2851 1753 421 3121 3967 2437 3529 1237 1567 4513 4561 1597 2131 3727 3931 3229 457 3607 4729 2593 1759 787 4621 3001 577 157 5119 4261 313 3457 2713 2731 3049 2887 1693 5113 733 2371 4663 631 751 5059 3253 739 3307 2539 3637 1999 2203 2281 3691 3301 B2 (Cross Symm)
4153 4969 3823 2269 877 1423 829 2953 3793 1861 421 1237 3121 1567 3967 4513 2437 4561 3529 1597 1783 3259 661 1663 2797 1459 3631 2161 4603 4933 2131 3607 3727 4729 3931 2593 3229 1759 457 787 1129 769 5077 2389 1933 4813 2677 5233 2659 271 4621 4261 3001 313 577 3457 157 2713 5119 2731 3019 2341 727 2503 4759 3697 4639 277 331 4657 3049 2371 2887 4663 1693 631 5113 751 733 5059 3391 2137 3187 4651 3109 2083 1699 2851 2089 1753 3253 1999 739 2203 3307 2281 2539 3691 3637 3301
Each suitable set of Anti Symmetric Magic Sub Squares corresponds with numerous Prime Number Four Way V type ZigZag Crosswise Symmetric Magic Squares of order 10.
14.15.8 Magic Squares (11 x 11)
Associated Magic Squares of order 11 with Square Inlays of Order 5 and 6 - as deducted and discussed in
Section 14.9.9 - are Four Way V type ZigZag.
14.15.9 Magic Squares (13 x 13)
Associated Magic Squares of order 13 with Square Inlays of Order 6 and 7 - as deducted and discussed in
Section 14.10.4 - are Four Way V type ZigZag.
The obtained results regarding the miscellaneous types of ZigZag Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Order
Characteristics
Subroutine
Results
4
Two Way V ZigZag
5
Two Way V ZigZag
6
Two Way V ZigZag,
Rect. Compact, Row Symmetric, Pan MagicFour Way V ZigZag, Pan Magic, Complete
7
Two Way V ZigZag, Ultra Magic
Four Way V ZigZag, Associated, Inlaid
9
Four Way V ZigZag, Associated, Inlaid
11
Four Way V ZigZag, Associated, Inlaid
13
Four Way V ZigZag, Associated, Inlaid
Comparable routines as listed above, can be used to generate Bent Diagonal Magic Squares, which will be described in following sections.
|
Index | About the Author |