Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.13.51 Simple Magic Squares (14 x 14)
Prime Number Simple Magic Squares of order 14 can be constructed with the Generator Principle, as applied in previous sections.
Simple Magic Square
The Generator Method has been applied for miscellaneous Magic Sums, for which
the first occurring Simple Magic Squares are shown in Attachment 14.13.51.
The resulting number of transformations, excluding the 180o rotated aspects, is 128/2 * 5040 = 322560.
14.13.52 Simple Magic Squares (14 x 14)
Order 14 Simple Magic Squares with single square inlay(s) of lower order
can be constructed with the generator method as discussed in detail in
Section 14.13.22 through Section 14.13.26.
The order 3, 4 and 5 Square Inlays might be moved along the Main Diagonal (top/left to bottom/right) by means of row and column permutations.
14.13.53 Simple Magic Squares (14 x 14)
Comparable with the method discussed in Section 14.13.27
it is possible to construct Order 14 Simple Magic Squares with four order 3 Simple Magic Square Inlays.
|
Simple Magic Type 1, Order 3 Inlays (4 ea)
743 347 419 761 317 449 1361 929 109 1327 103 1367 107 1321 179 503 827 197 509 821 1307 1013 1303 1301 137 1319 131 113 587 659 263 569 701 257 1291 139 149 1289 151 1297 1031 1277 641 443 479 733 499 337 1279 971 1283 1259 157 1249 167 163 359 521 683 127 523 919 173 1237 1223 181 1231 1063 191 1229 563 599 401 709 547 313 193 1217 211 199 1201 1171 1213 1123 607 863 673 617 859 857 631 853 811 691 619 97 839 643 1021 991 1033 1009 389 1019 433 397 997 421 727 409 431 383 1129 1103 1109 269 1117 311 277 251 1097 283 1093 281 1069 271 491 541 877 809 907 883 881 887 613 911 577 89 601 593 1163 227 229 1193 1187 1181 233 223 241 239 1153 293 1151 947 439 983 967 953 977 457 571 463 487 467 937 557 941 461 1091 1051 1039 1061 331 1087 353 307 379 373 823 367 1049 349 647 829 661 653 797 769 677 773 757 719 751 101 739 787 s3
1509 1527 1563 1569 Simple Magic Type 2, Order 3 Inlays (4 ea)
743 347 419 1361 929 1327 103 107 1321 109 1367 761 317 449 179 503 827 1307 1303 1013 131 1301 137 113 1319 197 509 821 587 659 263 1277 139 1289 1291 151 149 1297 1031 569 701 257 607 863 617 631 97 811 853 643 619 839 691 859 673 857 1021 991 1033 431 397 433 727 421 383 997 409 389 1009 1019 491 593 809 541 887 911 577 613 881 89 601 907 877 883 1163 227 1193 239 223 233 1153 1151 947 241 293 1187 229 1181 1129 1093 269 251 277 283 271 1097 1069 1103 281 1117 1109 311 647 829 653 677 719 773 751 757 787 739 101 797 661 769 1091 1051 1061 307 823 373 353 379 349 1049 367 331 1039 1087 439 941 953 983 463 571 937 487 461 467 557 977 967 457 641 443 479 1283 971 1259 167 1279 157 163 1249 733 499 337 359 521 683 173 1231 191 1223 1063 1229 1237 181 127 523 919 563 599 401 199 1201 193 1123 211 1171 1217 1213 709 547 313
Miscellaneous (main) diagonal sets are possible for both square types.
14.13.54 Simple Magic Squares (14 x 14)
Comparable with the method discussed in Section 14.13.27
it is possible to construct Order 14 Simple Magic Squares with four order 4 Pan Magic Square Inlays.
|
Simple Magic Type 1, Order 4 Inlays (4 ea)
677 1231 89 823 439 1259 97 977 271 167 1291 883 173 1283 103 809 691 1217 107 967 449 1249 1319 139 941 191 151 1327 1321 587 733 179 1289 409 947 127 1301 163 1303 881 157 263 719 193 1307 601 937 137 1279 419 1361 199 919 109 113 1367 443 1097 101 1019 631 1187 131 907 181 197 1237 1013 239 1277 149 971 491 1049 227 811 727 1091 223 1213 211 997 1223 277 1229 311 887 233 1297 521 797 241 229 1031 269 1171 1193 251 839 281 1181 359 701 337 1201 617 257 1153 283 857 1163 431 991 929 661 479 877 509 503 863 541 911 467 523 859 547 307 1151 1129 293 331 1123 313 317 1117 1103 347 653 1109 367 433 421 401 1039 1021 461 953 1033 457 1009 463 499 983 487 787 557 853 683 773 829 571 827 607 563 577 821 569 643 599 769 757 593 647 761 641 619 709 751 739 673 659 743 1063 353 379 1093 383 349 1051 373 1087 1061 613 389 1069 397 s4
2820 2772 2660 2856 Simple Magic Type 2, Order 4 Inlays (4 ea)
677 1231 89 823 1283 173 271 1291 167 883 439 1259 97 977 103 809 691 1217 151 1319 1327 139 191 941 107 967 449 1249 1321 587 733 179 1301 881 163 157 1303 263 1289 409 947 127 719 193 1307 601 1367 919 109 199 1361 113 937 137 1279 419 991 523 661 479 541 547 911 929 859 503 877 509 467 863 307 1151 1129 293 367 1103 347 653 1109 1117 331 1123 313 317 433 499 401 1039 421 487 463 983 457 1009 1021 461 953 1033 787 643 853 683 557 569 607 821 577 563 773 829 571 827 599 751 757 593 743 673 709 739 659 769 647 761 641 619 1063 613 379 1093 353 1061 1051 389 1069 397 383 349 1087 373 443 1097 101 1019 181 197 1013 1237 239 1277 631 1187 131 907 149 971 491 1049 211 1223 1213 997 277 223 227 811 727 1091 1229 311 887 233 1031 251 1193 269 229 1171 1297 521 797 241 839 281 1181 359 1153 257 283 857 1163 431 701 337 1201 617
Miscellaneous (main) diagonal sets are possible for both square types.
14.13.56 Composed Magic Squares (14 x 14)
Order 14 (Semi) Magic Squares might be composed of order 7 (Semi) Magic Sub Squares when the Magic Sum s14 is a multiple of 2.
|
Composed Simple Magic Square
421 751 1249 1279 229 1381 173 1231 1291 397 389 569 1427 179 347 251 1327 1367 1399 601 191 1373 1361 307 239 1409 223 571 509 233 1423 1433 227 211 1447 1439 1429 587 199 197 181 1451 163 167 193 577 1453 1459 1471
919 859 691 673 887 967 487 643 877 857 929 701 977 499 937 821 883 881 653 709 599 863 827 661 677 983 619 853 659 647 941 991 631 617 997 971 911 809 613 607 563 1009 491 541 641 719 1021 1031 1039
1013 1091 593 431 787 1297 271 241 257 269 769 1307 1319 1321 439 947 1033 1181 337 1283 263 557 367 1171 1201 1223 683 281 1289 1277 761 293 283 277 1303 1217 1213 419 349 1229 313 743 727 331 1237 1259 317 311 1301
739 953 811 1061 479 1087 353 1129 1103 839 443 433 383 1153 907 1019 773 503 757 1123 401 359 373 379 829 1163 1187 1193 547 523 1051 1063 1093 797 409 733 463 1109 1117 461 449 1151 1069 1049 521 467 1097 457 823
The Composed Simple Magic Square shown above corresponds with 4 * (7!)4 = 2,581 1015 squares for the applied diagonal elements (highlighted).
|
Four Way V Type Zig Zag Magic Square
421 919 751 859 1249 691 1279 673 229 887 1381 967 173 487 1013 739 1091 953 593 811 431 1061 787 479 1297 1087 271 353 1231 643 1291 877 397 857 389 929 569 701 1427 977 179 499 241 1129 257 1103 269 839 769 443 1307 433 1319 383 1321 1153 347 937 251 821 1327 883 1367 881 1399 653 601 709 191 599 439 907 947 1019 1033 773 1181 503 337 757 1283 1123 263 401 1373 863 1361 827 307 661 239 677 1409 983 223 619 571 853 557 359 367 373 1171 379 1201 829 1223 1163 683 1187 281 1193 509 659 233 647 1423 941 1433 991 227 631 211 617 1447 997 1289 547 1277 523 761 1051 293 1063 283 1093 277 797 1303 409 1439 971 1429 911 587 809 199 613 197 607 181 563 1451 1009 1217 733 1213 463 419 1109 349 1117 1229 461 313 449 743 1151 163 491 167 541 193 641 577 719 1453 1021 1459 1031 1471 1039 727 1069 331 1049 1237 521 1259 467 317 1097 311 457 1301 823
Composed Simple Magic Square
389 971 857 823 661 439 1367 1361 1301 701 239 223 191 137 919 863 431 859 607 461 509 353 281 887 1019 1049 1193 229 727 313 673 587 1187 653 569 337 613 733 877 883 907 601 593 521 503 997 739 787 641 691 677 709 797 401 853 751 571 1063 1153 317 227 809 563 821 811 479 379 757 547 1163 941 409 523 557 719 991 491 577 457 631 829 827 449 1259 647 487 349 1061 269 1327 271 251 1129 1109 347 293 1087 1033 419 683 467 1039 211 1321 1097 1123 257 283 1013 1069 311 367 977 929 643 241 1237 113 101 103 1277 1279 151 167 1213 1229 421 383 659 617 1009 1051 1291 1283 97 89 1249 1231 149 131 773 769 947 307 1171 173 433 463 983 881 937 761 619 443 233 373 1031 1091 1303 109 911 953 397 499 359 541 839 1021 743 599 331 967 181 1319 127 193 1217 1223 263 277 1103 1117 1307 1297 1093 197 139 107 1289 1151 163 157 1201 1181 199 179
Composed Simple Magic Square 1
163 257 1109 1231 733 593 739 857 503 937 541 569 809 619 1049 1291 103 317 823 433 971 1013 359 1031 383 397 991 499 271 149 1217 1123 557 947 409 367 1021 349 997 983 389 881 1277 1063 331 89 647 787 641 523 877 443 839 811 571 761 229 1151 859 521 1307 1361 1367 953 113 109 137 107 127 1319 1103 277 607 773 1297 797 1321 181 173 139 197 191 1303 1301 193 1187 1033 347 1051 1289 211 1327 241 1259 239 233 827 223 1201 179 311 1069 421 457 449 439 929 977 1061 1009 727 431 167 1213 1087 293 461 463 941 919 829 479 487 967 887 467 1223 157 283 1097 631 677 719 751 643 683 691 653 709 743 151 1229 1117 263 587 601 613 617 863 757 821 673 769 599 1249 131 251 1129 491 547 563 659 853 907 911 883 577 509 101 1279 1153 227 373 401 379 353 1019 419 1163 1093 661 1039 1283 97 199 1181 281 307 337 701 1237 1171 1193 1091 313 269
Concentric Border(s)
1291 787 541 193 1201 167 1217 157 1229 149 1249 103 1279 97 359 311 367 1033 1049 317 499 947 997 349 503 937 971 1021 293 607 1307 1361 1367 953 113 109 137 107 127 1319 773 1087 283 859 1297 797 1321 181 173 139 197 191 1303 1301 521 1097 569 983 1051 1289 211 1327 241 1259 239 233 827 223 397 811 277 389 421 457 449 439 929 977 1061 1009 727 431 991 1103 1109 739 461 463 941 919 829 479 487 967 887 467 641 271 263 809 631 677 719 751 643 683 691 653 709 743 571 1117 1123 823 587 601 613 617 863 757 821 673 769 599 557 257 251 857 491 547 563 659 853 907 911 883 577 509 523 1129 1151 733 373 401 379 353 1019 419 1163 1093 661 1039 647 229 227 761 281 307 337 701 1237 1171 1193 1091 313 269 619 1153 1181 409 1013 347 331 1063 881 433 383 1031 877 443 1069 199 1283 593 839 1187 179 1213 163 1223 151 1231 131 1277 101 89
The Order 10 Simple Magic Sub Square (s10 = 6900), constructed with the Generator Principle as applied in Section 14.13.10,
corresponds with
8 * 25/2 * (5!) = 8 * 1920 = 15360
Sub Squares.
|
Eccentric Border(s)
1291 97 1279 541 193 1201 167 1217 157 1229 149 1249 103 787 1283 89 101 839 1187 179 1213 163 1223 151 1231 131 1277 593 359 1021 311 971 937 1033 1049 317 499 947 997 349 503 367 293 1087 409 1069 443 347 331 1063 881 433 383 1031 877 1013 283 1097 607 773 1307 1361 1367 953 113 109 137 107 127 1319 569 811 859 521 1297 797 1321 181 173 139 197 191 1303 1301 277 1103 983 397 1051 1289 211 1327 241 1259 239 233 827 223 1109 271 739 641 421 457 449 439 929 977 1061 1009 727 431 263 1117 809 571 461 463 941 919 829 479 487 967 887 467 1123 257 857 523 631 677 719 751 643 683 691 653 709 743 251 1129 733 647 587 601 613 617 863 757 821 673 769 599 1181 199 761 619 491 547 563 659 853 907 911 883 577 509 227 1153 389 991 373 401 379 353 1019 419 1163 1093 661 1039 1151 229 823 557 281 307 337 701 1237 1171 1193 1091 313 269
The Top/Right Diagonals have been corrected by means of permutation of the pairs in the four left and the four top border lines.
The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:
|
Order
Main Characteristics
Subroutine
Results
-
-
-
-
14
Consecutive Primes, Simple Magic
3
Square Inlays, Cons. Primes {89 ... 1367}
4
Square Inlays, Cons. Primes {89 ... 1367}
-
-
-
-
Following sections will explain the concept of Prime Number Magic Squares composed of Twin Primes
and illustrate how subject squares can be generated with comparable routines as described in previous sections.
|
Index | About the Author |