Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.17   Sophie Germain Primes

Sophie Germain Primes {ai} are prime numbers for which the operation {bi} = 2 * {ai} + 1 results in prime numbers {bi} for i = 1 ... n.

Paired Prime Number Magic Squares (A , B), with the property {bi} = 2 * {ai} + 1 for i = 1 ... n, can be generated with comparable routines as described in previous sections.

14.17.1 Magic Squares (3 x 3)

Attachment 14.17.1 shows for the range {bi} = (23 ... 174299) the first occurring pairs of 3 x 3 Sophie Germain Magic Squares for miscellaneous Magic Sums.

Each pair shown corresponds with 8 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 9.

14.17.2 Magic Squares (4 x 4)

Attachment 14.17.14 shows for the range {bi} = (11 ... 1319) the first occurring pairs of 4 x 4 Sophie Germain Simple Magic Squares for miscellaneous (smaller) Magic Sums (ref. Priem4a).

Attachment 14.17.2 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 4 x 4 Sophie Germain Simple Magic Squares for miscellaneous (larger) Magic Sums (ref. Priem4b).

Each pair shown corresponds with 32 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 16.

Occasionally pairs of 4 x 4 Sophie Germain Pan Magic Squares can be found, of which an example is shown below:

MC4a = 21944
3779 3623 6899 7643
3761 10781 641 6761
4073 3329 7193 7349
10331 4211 7211 191
MC4b = 43892
7559 7247 13799 15287
7523 21563 1283 13523
8147 6659 14387 14699
20663 8423 14423 383

The pair shown corresponds with 384 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 16.

Attachment 14.17.24 shows for the range {ci} = (5639 ... 3827639) a few triplets of 4 x 4 Simple Magic Squares with Sophie Germain Primes {ai}, {bi} = 2 * {ai} + 1 and {ci} = 2 * {bi} + 1 for miscellaneous Magic Sums.

Each triplet shown corresponds with 32 triplets with the same Magic Sums and variable values.

14.17.3 Magic Squares (5 x 5)

Attachment 14.17.3 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 5 x 5 Sophie Germain Simple Magic Squares for miscellaneous Magic Sums.

Attachment 14.17.4 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 5 x 5 Sophie Germain Associated Magic Squares for miscellaneous Magic Sums.

Attachment 14.17.5 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 5 x 5 Sophie Germain Pan Magic Squares for miscellaneous Magic Sums, based on La Hirian Primaries as discussed in Section 14.12.2.

Based on the pairs of 3 x 3 Sophie Germain Magic Squares as discussed in Section 14.17.1 above, following pairs of 5 x 5 Sophie Germain Magic Squares can be constructed:

Occasionally order 5 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 25.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC5a = 11095
2399 1811 2273 2549 2063
1601 2141 2741 2543 2069
2699 2351 1733 1973 2339
2393 2753 1889 2129 1931
2003 2039 2459 1901 2693
MC5b = 22195
4799 3623 4547 5099 4127
3203 4283 5483 5087 4139
5399 4703 3467 3947 4679
4787 5507 3779 4259 3863
4007 4079 4919 3803 5387

The right square (5b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4 for order 6 squares.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 25.

Attachment 14.17.25 shows for the range {ci} = (2039 ... 16379999) a few triplets of 5 x 5 Simple Magic Squares with Sophie Germain Primes {ai}, {bi} = 2 * {ai} + 1 and {ci} = 2 * {bi} + 1 for miscellaneous Magic Sums.

Each triplet shown corresponds with 32 triplets with the same Magic Sums and variable values.

14.17.4 Magic Squares (6 x 6)

Attachment 14.17.9 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 6 x 6 Sophie Germain Simple Magic Squares, with symmetrical main diagonals, for miscellaneous Magic Sums.

Based on pairs of 4 x 4 Sophie Germain Simple Magic Squares as discussed in Section 14.17.2 above, pairs of 6 x 6 Sophie Germain Bordered Magic Squares can be constructed (ref. Priem6b2).

An example of a pair of 6 x 6 Sophie Germain Bordered Magic Squares, with Simple Magic Center Squares, is shown below:

MC6a = 20946
6173 719 2039 2063 6329 3623
419 6899 431 1583 5051 6563
1901 131 6323 5171 2339 5081
3593 5003 1811 659 6491 3389
5501 1931 5399 6551 83 1481
3359 6263 4943 4919 653 809
MC6b = 41898
12347 1439 4079 4127 12659 7247
839 13799 863 3167 10103 13127
3803 263 12647 10343 4679 10163
7187 10007 3623 1319 12983 6779
11003 3863 10799 13103 167 2963
6719 12527 9887 9839 1307 1619

Attachment 14.17.10 shows for the range {bi} = (23 ... 43607) the first occurring pairs of 6 x 6 Sophie Germain Bordered Magic Squares for miscellaneous Magic Sums.

Order 6 pairs of Sophie Germain Magic Squares with smaller Magic Sums can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 36.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC6a = 3450
83 179 1031 761 653 743
89 1229 641 809 191 491
113 1019 953 443 239 683
1013 173 251 359 1223 431
1049 719 281 659 233 509
1103 131 293 419 911 593
MC6b = 6906
167 359 2063 1523 1307 1487
179 2459 1283 1619 383 983
227 2039 1907 887 479 1367
2027 347 503 719 2447 863
2099 1439 563 1319 467 1019
2207 263 587 839 1823 1187

The right square (6b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4.

Attachment 14.17.41 shows a few pairs of Sophie Germain Simple Magic Squares, based on consecutive Sophie Germain Primes and the related Magic Sums.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 36.

14.17.5 Magic Squares (7 x 7)

Attachment 14.17.11 shows a few examples of pairs of 7 x 7 Sophie Germain Bordered Magic Squares, based on the pairs of 5 x 5 Sophie Germain Simple Magic Squares as discussed in Section 14.17.3 above.

Attachment 14.17.15 shows a few examples of pairs of 7 x 7 Sophie Germain Concentric Magic Squares, based on the pairs of 5 x 5 Sophie Germain Concentric Magic Squares as discussed in Section 14.17.3 above.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 49, (Order of magnitude 8 * (5!)2 = 115200 for the Same Center Square).

Order 7 pairs of Sophie Germain Magic Squares with smaller Magic Sums can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 49.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC7a = 12743
809 2693 2351 1019 1409 2393 2069
2903 1601 2039 1049 1289 1733 2129
761 953 2459 2741 2273 1583 1973
743 911 2339 2543 2003 2063 2141
2699 2819 1223 1031 1931 1559 1481
2939 1013 1229 1811 2399 1901 1451
1889 2753 1103 2549 1439 1511 1499
MC7b = 25493
1619 5387 4703 2039 2819 4787 4139
5807 3203 4079 2099 2579 3467 4259
1523 1907 4919 5483 4547 3167 3947
1487 1823 4679 5087 4007 4127 4283
5399 5639 2447 2063 3863 3119 2963
5879 2027 2459 3623 4799 3803 2903
3779 5507 2207 5099 2879 3023 2999

The right square (7b) has been constructed with the Generator Method as discussed in detail in Section 14.13.5a.

Attachment 14.17.51 shows a few pairs of Sophie Germain Simple Magic Squares, based on consecutive Sophie Germain Primes and the related Magic Sums.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 49,

14.17.6 Magic Squares (8 x 8)

In Section 14.6.1 was discussed how Prime Number Magic Squares of order 8 - with Magic Sum 2 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.

An example of a Magic Sum for which a set of 4 suitable Sophie Germain Simple Magic Squares can be found is shown below:

MC8a = 43888
10883 911 2939 7211 8273 2819 7883 2969
1559 9371 7151 3863 683 10799 2393 8069
5741 3821 1601 10781 2459 6053 2699 10733
3761 7841 10253 89 10529 2273 8969 173
7349 281 6491 7823 3851 2549 6323 9221
1031 7643 4211 9059 8741 7121 1289 4793
6983 3329 6761 4871 4019 6101 7433 4391
6581 10691 4481 191 5333 6173 6899 3539
MC8b = 87784
21767 1823 5879 14423 16547 5639 15767 5939
3119 18743 14303 7727 1367 21599 4787 16139
11483 7643 3203 21563 4919 12107 5399 21467
7523 15683 20507 179 21059 4547 17939 347
14699 563 12983 15647 7703 5099 12647 18443
2063 15287 8423 18119 17483 14243 2579 9587
13967 6659 13523 9743 8039 12203 14867 8783
13163 21383 8963 383 10667 12347 13799 7079

Attachment 14.17.12 contains a few more sets of Sophie Germain Simple Magic Squares, which can be used to construct pairs of Composed Sophie Germain Magic Squares of order 8 (ref. Priem4c2).

Attachment 14.17.13 shows for prime number range (23 ... 43607) the first occurring pairs of Composed Sophie Germain Magic Squares of order 8 for a few Magic Sums.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 64, (Order of magnitude 4! * 324 = 25165824).

Attachment 14.17.16 shows a few examples of pairs of 8 x 8 Sophie Germain Concentric Magic Squares, based on the pairs of 6 x 6 Sophie Germain Bordered Magic Squares as discussed in Section 14.17.4 above.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 64, (Order of magnitude 8 * (6!)2 = 4147200 for the Same Center Square).

14.17.7 Magic Squares (9 x 9)

Pairs of Composed Sophie Germain Magic Squares of order 9 can be constructed based on a combination of order 3 Magic Center Squares with 8 Semi Magic Squares (6 Magic Lines).

Attachment 14.17.17 shows for prime number range (23 ... 174299) the first occurring pairs of Composed Sophie Germain Magic Squares of order 9 for a few Magic Sums (ref. Priem9b1).

Attachment 14.17.18 shows a few examples of pairs of 9 x 9 Sophie Germain Concentric Magic Squares, based on the pairs of 7 x 7 Sophie Germain Concentric Magic Squares as discussed in Section 14.7.5 above.

Order 9 pairs of Sophie Germain Magic Squares with smaller Magic Sums can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 81.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC9a = 12273
3299 83 2969 3023 2753 53 41 29 23
719 191 179 2459 2741 2819 239 2693 233
1031 1451 1229 1223 1103 1289 1499 1889 1559
911 1481 953 1019 1013 1583 1601 1901 1811
2903 131 2939 173 2543 419 2963 89 113
2003 2273 641 659 653 1409 2069 593 1973
293 2393 251 2399 281 1049 359 2549 2699
431 2339 2351 509 443 2141 1439 491 2129
683 1931 761 809 743 1511 2063 2039 1733
MC9b = 24555
6599 167 5939 6047 5507 107 83 59 47
1439 383 359 4919 5483 5639 479 5387 467
2063 2903 2459 2447 2207 2579 2999 3779 3119
1823 2963 1907 2039 2027 3167 3203 3803 3623
5807 263 5879 347 5087 839 5927 179 227
4007 4547 1283 1319 1307 2819 4139 1187 3947
587 4787 503 4799 563 2099 719 5099 5399
863 4679 4703 1019 887 4283 2879 983 4259
1367 3863 1523 1619 1487 3023 4127 4079 3467

The right square (9b) has been constructed with the Generator Method as discussed in detail in Section 14.13.7a.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 81.

14.17.8 Magic Squares (10 x 10)

Pairs of Composed Sophie Germain Magic Squares of order 10 can be constructed based on a combination of order 4 Magic Center Squares with 4 Semi Magic Corner Squares (6 Magic Lines).

Attachment 14.17.19 shows for prime number range (23 ... 174299) the first occurring pairs of Composed Sophie Germain Magic Squares of order 10 for a few Magic Sums (ref. Priem10b1).

Attachment 14.17.20 shows a few examples of pairs of 10 x 10 Sophie Germain Concentric Magic Squares, based on the pairs of 8 x 8 Sophie Germain Concentric Magic Squares as discussed in Section 14.17.6 above.

Occasionally order 10 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 100.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC10a = 31394
5903 5741 5333 911 743 809 761 953 5849 4391
5711 5639 5441 5039 4349 1013 1031 1103 1019 1049
2459 2549 2699 2753 3779 2693 3359 3851 3803 3449
2069 2063 2129 2141 3539 4271 4019 4481 2273 4409
1289 1409 5231 5501 1223 5279 5303 1439 3491 1229
2741 2939 2819 2969 3623 2903 2963 3821 3593 3023
5399 5171 1559 3299 4943 1499 1451 1481 5081 1511
1901 1931 1973 2039 3389 4373 3863 5003 2003 4919
1583 1601 1811 3329 1733 4793 4733 5051 1889 4871
2339 2351 2399 3413 4073 3761 3911 4211 2393 2543
MC10b = 62798
11807 11483 10667 1823 1487 1619 1523 1907 11699 8783
11423 11279 10883 10079 8699 2027 2063 2207 2039 2099
4919 5099 5399 5507 7559 5387 6719 7703 7607 6899
4139 4127 4259 4283 7079 8543 8039 8963 4547 8819
2579 2819 10463 11003 2447 10559 10607 2879 6983 2459
5483 5879 5639 5939 7247 5807 5927 7643 7187 6047
10799 10343 3119 6599 9887 2999 2903 2963 10163 3023
3803 3863 3947 4079 6779 8747 7727 10007 4007 9839
3167 3203 3623 6659 3467 9587 9467 10103 3779 9743
4679 4703 4799 6827 8147 7523 7823 8423 4787 5087

The right square (10b) has been constructed with the Generator Method as discussed in detail in Section 14.13.10.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 100.

14.17.9 Magic Squares (11 x 11)

Order 11 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 121.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC11a = 49237
7901 7883 7643 7841 2939 1439 1499 1451 1511 1481 7649
7823 7691 7103 7541 3359 1559 1733 1583 1811 1601 7433
1889 1901 1973 7043 3593 7151 2003 7349 7193 1931 7211
7121 7079 2129 2141 4271 2069 6761 2039 6581 6983 2063
5903 5849 4793 5711 3389 3023 5231 2969 5741 3299 3329
2741 2753 2963 2819 6269 6101 6131 4391 6053 6113 2903
3413 3449 3623 3491 4409 5501 5333 5639 5399 5441 3539
3761 3779 3803 3821 5279 4349 3851 5303 5039 5171 5081
2273 2399 4733 2351 6329 6551 6449 6899 2339 6521 2393
3863 3911 4211 4019 4919 5003 4073 5051 4871 4373 4943
2549 2543 6263 2459 4481 6491 6173 6563 2699 6323 2693
MC11b = 98485
15803 15767 15287 15683 5879 2879 2999 2903 3023 2963 15299
15647 15383 14207 15083 6719 3119 3467 3167 3623 3203 14867
3779 3803 3947 14087 7187 14303 4007 14699 14387 3863 14423
14243 14159 4259 4283 8543 4139 13523 4079 13163 13967 4127
11807 11699 9587 11423 6779 6047 10463 5939 11483 6599 6659
5483 5507 5927 5639 12539 12203 12263 8783 12107 12227 5807
6827 6899 7247 6983 8819 11003 10667 11279 10799 10883 7079
7523 7559 7607 7643 10559 8699 7703 10607 10079 10343 10163
4547 4799 9467 4703 12659 13103 12899 13799 4679 13043 4787
7727 7823 8423 8039 9839 10007 8147 10103 9743 8747 9887
5099 5087 12527 4919 8963 12983 12347 13127 5399 12647 5387

The bottom square (11b) has been constructed with the Generator Method as discussed in detail in Section 14.13.21.

The pair shown above corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 121.

14.17.10 Magic Squares (12 x 12)

Prime Number Magic Squares of order 12 - with Magic Sum 3 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.

Attachment 14.17.23 shows for prime number range (23 ... 174299) the first occurring pairs of Composed Sophie Germain Magic Squares of order 12 for a few Magic Sums.

Occasionally order 12 pairs of Sophie Germain Magic Squares can be constructed based on consecutive Sophie Germain Primes {bi} for i = 1 ... 144.

An example of a pair of Sophie Germain Magic Squares, based on consecutive Sophie Germain Primes, is shown below:

MC12a = 60228
9539 9479 1409 9473 9419 1451 1439 9371 2351 3779 1289 1229
8951 8741 1901 1733 8513 8693 1889 2399 8663 5333 1811 1601
2753 3863 7121 2903 2969 7103 7043 2963 2819 6329 7151 7211
2129 2273 7841 2339 2393 2459 7691 7823 5903 3593 7883 7901
2543 2549 7541 2693 2699 7349 2741 7433 2939 6449 7643 7649
3539 3491 6551 3803 3761 6491 6263 3449 3623 6173 6521 6563
3851 4019 4073 3911 6101 6131 6053 4373 5303 3821 6269 6323
7079 3299 3389 6899 3329 6113 6581 3413 6761 3359 6983 3023
4409 5441 5039 4793 4871 5171 4943 4919 5231 5279 5399 4733
4211 5849 5711 4349 5003 5639 5501 4481 4391 5081 5741 4271
1931 2003 8069 8273 2141 2069 8111 8093 7193 2063 2039 8243
9293 9221 1583 9059 9029 1559 1973 1511 5051 8969 1499 1481
MC12b = 120468
19079 18959 2819 18947 18839 2903 2879 18743 4703 7559 2579 2459
17903 17483 3803 3467 17027 17387 3779 4799 17327 10667 3623 3203
5507 7727 14243 5807 5939 14207 14087 5927 5639 12659 14303 14423
4259 4547 15683 4679 4787 4919 15383 15647 11807 7187 15767 15803
5087 5099 15083 5387 5399 14699 5483 14867 5879 12899 15287 15299
7079 6983 13103 7607 7523 12983 12527 6899 7247 12347 13043 13127
7703 8039 8147 7823 12203 12263 12107 8747 10607 7643 12539 12647
14159 6599 6779 13799 6659 12227 13163 6827 13523 6719 13967 6047
8819 10883 10079 9587 9743 10343 9887 9839 10463 10559 10799 9467
8423 11699 11423 8699 10007 11279 11003 8963 8783 10163 11483 8543
3863 4007 16139 16547 4283 4139 16223 16187 14387 4127 4079 16487
18587 18443 3167 18119 18059 3119 3947 3023 10103 17939 2999 2963

The bottom square (12b) has been constructed with the Generator Method as discussed in detail in Section 14.13.31.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 144.

14.17.11 Summary

The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:

Order

Main Characteristics

Subroutine

Results

3

Simple Magic

Priem3

Attachment 14.17.1

4

Simple Magic, Smaller Magic Sums

Priem4a

Attachment 14.17.14

Simple Magic, Larger  Magic Sums

Priem4b

Attachment 14.17.2

Simple Magic, Triplets

Attachment 14.17.24

5

Simple Magic

Priem5a

Attachment 14.17.3

Simple Magic, Triplets

Attachment 14.17.25

Associated

Priem5e

Attachment 14.17.4

Pan Magic

La Hirian

Attachment 14.17.5

Concentric

Priem5c2

Attachment 14.17.6

Magic, Square  Inlay

Priem5g3

Attachment 14.17.7

Magic, Diamond Inlay

Priem5g2

Attachment 14.17.8

6

Symmetric Main Diagonals

Priem6a2

Attachment 14.17.9

Bordered

Priem6b2

Attachment 14.17.10

7

Bordered

Priem7a2

Attachment 14.17.11

Concentric

Attachment 14.17.15

8

Composed of Simple Magic Sub Squares

Priem4c2

Attachment 14.17.13

Concentric

Priem8a2

Attachment 14.17.16

9

Magic Cntr Sqr, Semi Magic Sub Squares

Priem9b1

Attachment 14.17.17

Concentric

Priem9a1

Attachment 14.17.18

10

Magic Cntr Sqr, Semi Magic Corner Squares

Priem10b1

Attachment 14.17.19

Concentric

Priem10c

Attachment 14.17.20

12

Composed of Simple Magic Sub Squares

Priem4c2

Attachment 14.17.23

Following sections will provide miscellaneous construction methods for Two and Four Way, V type Zig Zag Magic Squares.


Vorige Pagina Volgende Pagina Index About the Author