Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.14   Magic Twin Squares

Prime Number Magic Twin Squares are paired Magic Squares (A , B) with the property {bi} = {ai + d} for i = 1 ... n and d >= 2. This section will consider Twin Squares for d = 2.

Prime Number Magic Twin Squares can be generated with comparable routines as described in previous sections, however based on those prime numbers {bi} for which also {bi - 2} is prime for i = 1 ... n.

14.14.1 Magic Twin Squares (3 x 3)

The enumeration of order 3 Prime Number Magic Twin Squares, which can be found within prime number range (2 ... 9923) for d = 2 ... 9184, has been discussed in Attachment 14.2.

Attachment 14.14.1 shows for prime number range (17 ... 11779) and d = 2 the first occurring Prime Number Magic Twin Squares for miscellaneous Magic Sums.

Each pair shown corresponds with 8 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 9.

14.14.2 Magic Twin Squares (4 x 4)

Attachment 14.14.2 shows for prime number range (7 ... 661) and d = 2 the first occurring Prime Number Magic Twin Squares for miscellaneous Magic Sums.

Each pair corresponds with 32 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 16.

Attachment 14.14.3 shows for prime number range (13 ... 50551) and d = 2 the first occurring Prime Number Pan Magic Twin Squares for miscellaneous Magic Sums.

Each pair shown corresponds with 384 pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 16.

14.14.3 Magic Twin Squares (5 x 5)

Attachment 14.14.16 shows for prime number range (5 ... 1609) and d = 2 the first occurring Prime Number Simple Magic Twin Squares for miscellaneous Magic Sums.

Attachment 14.14.17 shows for prime number range (11 ... 9463) and d = 2 the first occurring Prime Number Pan Magic Twin Squares for miscellaneous Magic Sums, based on La Hirian Primaries as discussed in Section 14.12.2.

Attachment 14.14.6 shows for prime number range (13 ... 14629) and d = 2 the first occurring Prime Number Associated Magic Twin Squares for miscellaneous Magic Sums.

Based on the order 3 Prime Number Simple Magic Twin Squares as discussed in Section 14.4.1 above, following order 5 Prime Number Magic Twin Squares can be constructed:

Occasionally order 5 Prime Number Magic Twin Squares can be constructed based on consecutive prime numbers {bi} for i = 1 ... 25.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC5a = 2173
107 311 599 809 347
821 431 461 281 179
191 269 827 227 659
857 521 137 239 419
197 641 149 617 569
MC5b = 2183
109 313 601 811 349
823 433 463 283 181
193 271 829 229 661
859 523 139 241 421
199 643 151 619 571

The right square (5b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4 for order 6 squares.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 25.

14.14.4 Magic Twin Squares (6 x 6)

Attachment 14.14.76 shows for prime number range (13 ... 3769) and d = 2 the first occurring Prime Number Simple Magic Twin Squares with Symmetric Main Diagonals for miscellaneous Magic Sums.

Attachment 14.14.72 shows for prime number range (19 ... 49921) and d = 2 the first occurring Prime Number Associated Magic Twin Squares for miscellaneous Magic Sums.

Attachment 14.14.75 shows the corresponding Prime Number Pan Magic and Complete Twin Squares (Eulers Transformation).

Based on order 4 Prime Number (Pan) Magic Twin Squares, order 6 Prime Number Concentric Magic Twin Squares can be constructed (ref. Priem6b2).

An example of a pair of Prime Number Concentric Magic Twin Squares, with Pan Magic Center Squares, is shown below:

MC6a = 18264
5741 569 1607 3119 5231 1997
431 1871 1667 3851 4787 5657
1451 2789 5849 809 2729 4637
2549 2237 1301 4217 4421 3539
4001 5279 3359 3299 239 2087
4091 5519 4481 2969 857 347
MC6b = 18276
5743 571 1609 3121 5233 1999
433 1873 1669 3853 4789 5659
1453 2791 5851 811 2731 4639
2551 2239 1303 4219 4423 3541
4003 5281 3361 3301 241 2089
4093 5521 4483 2971 859 349

Attachment 14.14.71 shows for prime number range (13 ... 17837) and d = 2 the first occurring Prime Number Concentric Magic Twin Squares for miscellaneous Magic Sums.

Following order 6 Prime Number Simple Magic Twin Squares can be constructed, based on combinations of order 3 Prime Number Semi Magic Twin Squares (6 Magic Lines):

  • Attachment 14.14.73 Prime Number Simple Magic Twin Squares, four order 3 Semi Magic Sub Squares

  • Attachment 14.14.74 Prime Number Simple Magic Twin Squares, two order 3 Semi Magic Bottom Squares

Alternatively order 6 Prime Number Magic Twin Squares can be constructed based on consecutive prime numbers {bi} for i = 1 ... 36.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

Mc6a = 5646
1451 659 1289 827 269 1151
1619 419 1427 1019 281 881
599 431 1031 857 1667 1061
347 1301 809 617 1481 1091
311 1229 521 1277 1487 821
1319 1607 569 1049 461 641
Mc6b = 5658
1453 661 1291 829 271 1153
1621 421 1429 1021 283 883
601 433 1033 859 1669 1063
349 1303 811 619 1483 1093
313 1231 523 1279 1489 823
1321 1609 571 1051 463 643

The right square (6b) has been constructed with the Generator Method as discussed in detail in Section 14.13.4.

Attachment 14.14.77 shows a few pairs of Prime Number Magic Twin Squares, based on consecutive (twin) primes and the related Magic Sums.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 36.

14.14.5 Magic Twin Squares (7 x 7)

Based on the order 5 Prime Number Magic Twin Squares found in Section 14.4.3 above, following order 7 Prime Number Magic Twin Squares can be constructed (ref. Section 14.5.1):

Based on the order 3 and 4 Prime Number Magic Twin Squares found in Section 14.4.1 and 2 above, following order 7 Prime Number Magic Twin Squares can be constructed (ref. Section 14.5.7):

  • Attachment 14.14.85 Prime Number Composed   Magic Twin Squares, Simple Magic Corner Squares

  • Attachment 14.14.86 Prime Number Composed   Magic Twin Squares, Simple Embedded Magic Squares

Attachment 14.14.87 contains a few examples of sets of Prime Number Pan Magic Twin Squares, based on La Hirian Primaries as discussed in Section 14.12.4.

Order 7 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 49.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC7a = 9275
431 2267 2237 347 1487 2087 419
2129 2027 569 461 1427 2141 521
857 827 1931 1721 881 1607 1451
1289 821 809 1949 1871 659 1877
1091 1667 1787 1019 1061 1031 1619
1997 617 641 2081 1229 599 2111
1481 1049 1301 1697 1319 1151 1277
MC7b = 9289
433 2269 2239 349 1489 2089 421
2131 2029 571 463 1429 2143 523
859 829 1933 1723 883 1609 1453
1291 823 811 1951 1873 661 1879
1093 1669 1789 1021 1063 1033 1621
1999 619 643 2083 1231 601 2113
1483 1051 1303 1699 1321 1153 1279

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 49.

14.14.6 Magic Twin Squares, Composed (8 x 8)

In Section 14.6.1 was discussed how Prime Number Magic Squares of order 8 - with Magic Sum 2 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.

An example of a Magic Sum for which a set of 4 Prime Number Magic Twin Squares can be found is s1 = 77620:

MC8a = 155224
11057 7559 31247 27749 10709 1787 37019 28097
2339 29567 9239 36467 7487 32609 6197 31319
25469 1877 36929 13337 20747 4649 34157 18059
38747 38609 197 59 38669 38567 239 137
18917 10499 28307 19889 29387 23669 15137 9419
4049 25409 13397 34757 3299 13007 25799 35507
16187 5867 32939 22619 6689 4157 34649 32117
38459 35837 2969 347 38237 36779 2027 569
MC8b = 155240
11059 7561 31249 27751 10711 1789 37021 28099
2341 29569 9241 36469 7489 32611 6199 31321
25471 1879 36931 13339 20749 4651 34159 18061
38749 38611 199 61 38671 38569 241 139
18919 10501 28309 19891 29389 23671 15139 9421
4051 25411 13399 34759 3301 13009 25801 35509
16189 5869 32941 22621 6691 4159 34651 32119
38461 35839 2971 349 38239 36781 2029 571

Attachment 14.14.4 contains a few more sets of Prime Number Magic Twin Squares, which can be used to construct Composed Magic Twin Squares of order 8 (ref. Priem4c2).

Attachment 14.14.7 shows for prime number range (59 ... 98929) and d = 2 the first occurring Prime Number Composed Magic Twin Squares of order 8 for a few Magic Sums.

Attachment 14.14.5 shows for prime number range (13 ... 50593) and d = 2 the first occurring Prime Number Concentric Magic Twin Squares for a few Magic Sums.

Order 8 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 64.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC8a = 7612
17 1619 1091 1697 1229 881 269 809
1319 179 857 101 347 1931 1451 1427
521 227 1289 2129 107 311 1997 1031
29 1301 1787 827 1061 71 1877 659
1607 1667 461 821 191 641 137 2087
1481 431 59 1019 2081 2111 149 281
1487 1949 197 599 569 1049 1721 41
1151 239 1871 419 2027 617 11 1277
MC8b = 7628
19 1621 1093 1699 1231 883 271 811
1321 181 859 103 349 1933 1453 1429
523 229 1291 2131 109 313 1999 1033
31 1303 1789 829 1063 73 1879 661
1609 1669 463 823 193 643 139 2089
1483 433 61 1021 2083 2113 151 283
1489 1951 199 601 571 1051 1723 43
1153 241 1873 421 2029 619 13 1279

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 64.

14.14.7 Magic Twin Squares (9 x 9)

Composed Magic Twin Squares of order 9 can be constructed based on a combination of one order 3 Magic Twin Square with 8 Semi Magic Twin Squares (6 Magic Lines).

Attachment 14.14.20 shows for prime number range (5 ... 45343) and d = 2 the first occurring Prime Number Composed Magic Twin Squares for a few Magic Sums (ref. Priem9b).

Based on the order 7 Prime Number Magic Twin Squares found in Section 14.4.5 above, following order 9 Prime Number Magic Twin Squares can be constructed (ref. Section 14.7.4):

  • Prime Number Concentric Magic Twin Squares
  • Prime Number Bordered   Magic Twin Squares, Center Square with Square Inlay
  • Prime Number Bordered   Magic Twin Squares, Center Square with Diamond Inlay
  • Prime Number Bordered   Magic Twin Squares, Associated Center Square

of which a few examples are shown in Attachment 14.14.10.

Order 9 Associated Magic Squares with order 4 and 5 Square Inlays, can be obtained by means of a transformation of order 9 Composed Magic Squares (ref. Section 14.7.11).

An Example, based on order 4 and 5 Prime Number Magic Twin Squares found in Section 14.4.2 and 3 above, is enclosed in Attachment 14.14.95 which contains:

  • Prime Number Composed   Magic Twin Squares with Associated Corner Squares and Rectangles
  • Prime Number Composed   Magic Twin Squares with Associated Center Square
  • Prime Number Associated Magic Twin Squares with Associated Embedded Magic Squares

Order 9 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 81.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC9a = 13845
107 101 137 197 3359 3329 3299 3167 149
3257 3251 2969 2711 191 179 239 821 227
269 347 311 281 3119 1031 2801 2687 2999
1481 1931 1619 1277 1607 1319 1427 1487 1697
857 1877 2309 659 2267 2129 809 827 2111
1667 1949 1997 2141 881 1019 2081 1049 1061
1787 1091 1229 1451 1301 2027 2087 1151 1721
1871 569 617 2339 599 2381 641 2237 2591
2549 2729 2657 2789 521 431 461 419 1289
MC9b = 13863
109 103 139 199 3361 3331 3301 3169 151
3259 3253 2971 2713 193 181 241 823 229
271 349 313 283 3121 1033 2803 2689 3001
1483 1933 1621 1279 1609 1321 1429 1489 1699
859 1879 2311 661 2269 2131 811 829 2113
1669 1951 1999 2143 883 1021 2083 1051 1063
1789 1093 1231 1453 1303 2029 2089 1153 1723
1873 571 619 2341 601 2383 643 2239 2593
2551 2731 2659 2791 523 433 463 421 1291

The right square (9b) has been constructed with the Generator Method as discussed in detail in Section 14.13.10 for order 10 squares.

Each pair shown corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 81.

14.14.8 Magic Twin Squares (10 x 10)

Based on the order 8 Prime Number Concentric Magic Twin Squares found in Section 14.4.6 above, order 10 Prime Number Magic Twin Squares can be constructed (ref. Section 14.8.3):

Attachment 14.14.30 shows for prime number range (29 ... 42703) and d = 2 the first occurring Prime Number Composed Magic Twin Squares, with order 4 Associated Center Square, for a few Magic Sums.

Order 10 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 100.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC10a = 16784
197 3527 179 1877 149 227 3389 191 3581 3467
3257 347 3251 311 3359 3329 281 2141 239 269
1289 2129 1931 1319 1151 1277 1301 2381 1667 2339
461 2999 1949 3167 419 431 2969 569 3299 521
5 1871 29 41 17 11 3371 3767 3851 3821
3671 107 3461 2081 3539 3557 101 59 71 137
2549 1049 2267 1061 2591 2309 1229 1607 1031 1091
2711 617 809 2789 3119 2729 659 2111 599 641
1787 1451 2027 1481 1619 2087 1487 1721 1427 1697
857 2687 881 2657 821 827 1997 2237 1019 2801
MC10b = 16804
199 3529 181 1879 151 229 3391 193 3583 3469
3259 349 3253 313 3361 3331 283 2143 241 271
1291 2131 1933 1321 1153 1279 1303 2383 1669 2341
463 3001 1951 3169 421 433 2971 571 3301 523
7 1873 31 43 19 13 3373 3769 3853 3823
3673 109 3463 2083 3541 3559 103 61 73 139
2551 1051 2269 1063 2593 2311 1231 1609 1033 1093
2713 619 811 2791 3121 2731 661 2113 601 643
1789 1453 2029 1483 1621 2089 1489 1723 1429 1699
859 2689 883 2659 823 829 1999 2239 1021 2803

The right square (10b) has been constructed with the Generator Method as discussed in detail in Section 14.13.10.

Each pair corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 100.

14.14.9 Magic Twin Squares (11 x 11)

Based on the order 9 Prime Number Magic Twin Squares found in Section 14.4.7 above, following order 11 Prime Number Magic Twin Squares can be constructed (ref. Section 14.9.1):

  • Prime Number Concentric Magic Twin Squares
  • Prime Number Bordered   Magic Twin Squares, Center Square with Square Inlay
  • Prime Number Bordered   Magic Twin Squares, Center Square with Diamond Inlay

of which a few examples are shown in Attachment 14.14.11.

Order 11 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 121.

An example of a pair of Prime Number Inlaid Magic Twin Squares, based on consecutive (twin) primes, is shown below:

MC11a = 25189, MC4a = 8420
1931 2711 1229 2549 4931 107 149 4967 137 4481 1997
3539 1289 1721 1871 2237 4799 197 4649 191 4517 179
2129 3329 2081 881 269 2267 4787 4721 239 4259 227
821 1091 3389 3119 281 2309 347 311 4547 4337 4637
4157 4217 521 4421 1481 461 4271 431 4241 419 569
1607 1619 1667 1697 3557 3581 1949 1877 3257 1787 2591
3917 4049 4229 641 809 599 4127 617 1451 659 4091
71 2789 101 2729 3527 3299 2999 2801 3461 41 3371
1061 1151 3851 1319 1487 3767 2687 1427 3671 1301 3467
3929 857 4019 3821 3359 1031 1019 1277 827 1049 4001
2027 2087 2381 2141 3251 2969 2657 2111 3167 2339 59
MC11b = 25211, MC4b = 8428
1933 2713 1231 2551 4933 109 151 4969 139 4483 1999
3541 1291 1723 1873 2239 4801 199 4651 193 4519 181
2131 3331 2083 883 271 2269 4789 4723 241 4261 229
823 1093 3391 3121 283 2311 349 313 4549 4339 4639
4159 4219 523 4423 1483 463 4273 433 4243 421 571
1609 1621 1669 1699 3559 3583 1951 1879 3259 1789 2593
3919 4051 4231 643 811 601 4129 619 1453 661 4093
73 2791 103 2731 3529 3301 3001 2803 3463 43 3373
1063 1153 3853 1321 1489 3769 2689 1429 3673 1303 3469
3931 859 4021 3823 3361 1033 1021 1279 829 1051 4003
2029 2089 2383 2143 3253 2971 2659 2113 3169 2341 61

The right square (11b) has been constructed with the Generator Method as discussed in detail in Section 14.13.21 and Section 14.13.23.

Attachment 14.14.96 shows for the same prime number range {bi} = {43 ... 4969} a pair of Prime Number Inlaid Magic Twin Squares with order 5 Inlays.

Each pair corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 121.

14.14.10 Magic Twin Squares (12 x 12)

Based on the order 10 Prime Number Concentric Magic Twin Squares found in Section 14.4.8 above, order 12 Prime Number Concentric Magic Twin Squares can be constructed (ref. Priem12a).

Attachment 14.14.15 shows for prime number range (13 ... 98809) and d = 2 the first occurring Prime Number Concentric Magic Twin Squares for a few Magic Sums.

Based on the order 6 Prime Number Magic Twin Squares as discussed in Section 14.4.4 above, following order 12 Composed Prime Number Magic Twin Squares can be constructed (ref. Priem12b):

  • Composed, 16 Semi Magic Sub Squares (3 x 3)
  • Composed, Associated Center Square  (6 x 6), 12 Semi Magic Border Squares (3 x 3)
  • Composed, Concentric Center Square  (6 x 6), 12 Semi Magic Border Squares (3 x 3)

of which a few examples are shown in Attachment 14.14.22.

Prime Number Magic Squares of order 12 - with Magic Sum 3 * s1 - can be composed out of 4th order Prime Number Magic Squares with Magic Sum s1.

Attachment 14.14.23 shows for prime number range (19 ... 49939) and d = 2 the first occurring Prime Number Composed Magic Twin Squares of order 12, for a few Magic Sums.

Order 12 Prime Number Magic Twin Squares with smaller Magic Sums can be constructed based on consecutive prime numbers {bi} for i = 1 ... 144.

An example of a pair of Prime Number Magic Twin Squares, based on consecutive (twin) primes, is shown below:

Mc12a = 36138
881 2309 6197 4649 281 2591 599 5657 347 269 6269 6089
2141 809 5867 5519 5501 1049 2381 419 5741 521 5879 311
5477 3917 659 5417 641 5849 5639 617 821 5441 569 1091
5099 857 1061 5021 1151 5279 5231 1301 4271 5009 827 1031
1871 4241 4229 2027 3929 1877 4421 3299 1997 4217 2081 1949
1427 2801 6659 191 6569 1721 431 6131 3329 149 179 6551
1931 461 239 4337 6449 1019 2969 5651 197 227 6359 6299
4517 4637 1607 1787 1619 4547 1481 4049 4259 4481 1487 1667
3359 3467 3389 137 3461 2789 3539 2999 3371 3251 3257 3119
4799 4931 1277 1229 1697 4967 1289 3671 4721 4787 1319 1451
2087 4127 2267 2657 2129 2111 4157 2237 3527 4019 4091 2729
2549 3581 2687 3167 2711 2339 4001 107 3557 3767 3821 3851
Mc12b = 36162
883 2311 6199 4651 283 2593 601 5659 349 271 6271 6091
2143 811 5869 5521 5503 1051 2383 421 5743 523 5881 313
5479 3919 661 5419 643 5851 5641 619 823 5443 571 1093
5101 859 1063 5023 1153 5281 5233 1303 4273 5011 829 1033
1873 4243 4231 2029 3931 1879 4423 3301 1999 4219 2083 1951
1429 2803 6661 193 6571 1723 433 6133 3331 151 181 6553
1933 463 241 4339 6451 1021 2971 5653 199 229 6361 6301
4519 4639 1609 1789 1621 4549 1483 4051 4261 4483 1489 1669
3361 3469 3391 139 3463 2791 3541 3001 3373 3253 3259 3121
4801 4933 1279 1231 1699 4969 1291 3673 4723 4789 1321 1453
2089 4129 2269 2659 2131 2113 4159 2239 3529 4021 4093 2731
2551 3583 2689 3169 2713 2341 4003 109 3559 3769 3823 3853

The right square (12b) has been constructed with the Generator Method as discussed in detail in Section 14.13.31.

Each pair corresponds with numerous pairs with the same Magic Sums and variable values {ai}/{bi}, i = 1 ... 144.

14.14.11 Summary

The obtained results regarding the miscellaneous types of Prime Number Magic Twin Squares as deducted and discussed in previous sections are summarized in following table:

Order

Main Characteristics

Subroutine

Results

3

Simple Magic

Priem3

Attachment 14.14.1

4

Simple Magic

Priem4

Attachment 14.14.2

Pan Magic

Priem4b

Attachment 14.14.3

5

Simple Magic

Priem5a2

Attachment 14.14.16

Pan Magic

La Hirian

Attachment 14.14.17

Associated

Priem5e

Attachment 14.14.6

Concentric

Priem5c2

Attachment 14.14.9

Magic, Square  Inlay

Priem5g3

Attachment 14.14.13

Magic, Diamond Inlay

Priem5g2

Attachment 14.14.14

6

Concentric

Priem6b2

Attachment 14.14.71

Associated

Priem6i2

Attachment 14.14.72

Pan Magic and Complete

Euler

Attachment 14.14.75

Simple, Symmetric Main Diagonals

Priem6a2

Attachment 14.14.76

Simple, Four Semi Magic Sub    Squares

Priem6c2

Attachment 14.14.73

Simple, Two  Semi Magic Bottom Squares

Priem6c4

Attachment 14.14.74

7

Bordered

Priem7a2

Ref. Sect. 14.14.5

Composed, Simple Magic Corner Squares

Priem7f2

Attachment 14.14.85

Pan Magic

La Hirian

Attachment 14.14.87

8

Composed, Simple Magic Sub    Squares

Priem4c2

Attachment 14.14.7

Concentric

Priem8a2

Attachment 14.14.5

9

Composed, Semi Magic Sub Squares

Priem9b

Attachment 14.14.20

Concentric

Priem9a2

Attachment 14.14.10

10

Concentric

Priem10c

Attachment 14.14.12

Bordered, Composed   Center Square

Priem10c

Attachment 14.14.18

Composed, Associated Center Square

Priem10b

Attachment 14.14.30

11

Concentric

Priem11a

Attachment 14.14.11

12

Concentric

Priem12a

Attachment 14.14.15

Composed, Miscellaneous Types

Priem12b

Attachment 14.14.22

Composed, Simple Magic Sub Squares

Priem4c2

Attachment 14.14.23

-

-

-

-

Following sections will provide miscellaneous construction methods for paired squares based on Sophie Germain Primes.


Vorige Pagina Volgende Pagina Index About the Author